Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 35(12): 1630-1636, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28228321

RESUMO

Mannheimia haemolytica is an important pathogen of pneumonia in bighorn sheep (BHS), consistently causing 100% mortality under experimental conditions. Leukotoxin is the critical virulence factor of M. haemolytica. In a 'proof of concept' study, a vaccine containing leukotoxin and surface antigens of M. haemolytica induced 100% protection in BHS, but required multiple booster doses. Vaccination of wildlife is difficult. BHS, however, can be vaccinated at the time of transplantation, but administration of booster doses is impossible. A vaccine that does not require booster doses, therefore, is ideal for vaccination of BHS. Herpesviruses are ideal vectors for development of such a vaccine because of their ability to undergo latency with subsequent reactivation which obviates the need for booster administration. The objective of this study was to evaluate the potential of bovine herpesvirus 1 (BHV-1) as a vector encoding M. haemolytica immunogens. As the first step towards this goal, the permissiveness of BHS for BHV-1 infection was determined. BHS inoculated with wild-type BHV-1 shed the virus following infection. The lytic phase of infection was superseded by latency, and treatment of latently-infected BHS with dexamethasone reactivated the virus. A recombinant BHV-1-vectored vaccine encoding a leukotoxin-neutralizing epitope and an immuno-dominant epitope of the outer membrane protein PlpE was developed by replacing the viral glycoprotein C gene with a leukotoxin-plpE chimeric gene. Four of six BHS vaccinated with the recombinant virus developed significant leukotoxin-neutralizing antibodies at day 21 post-vaccination, while two of six BHS developed significant surface antigen antibodies at day 17 post-vaccination. These antibodies, however, were inadequate for protection of BHS against M. haemolytica challenge. These data indicate that BHV-1 is a suitable vector for immunization of BHS, but additional experimentation with the chimeric insert is necessary for development of a more efficacious vaccine.


Assuntos
Vacinas Bacterianas/imunologia , Portadores de Fármacos , Herpesvirus Bovino 1/genética , Mannheimia haemolytica/imunologia , Pasteurelose Pneumônica/prevenção & controle , Doenças dos Ovinos/prevenção & controle , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Bovinos , Vetores Genéticos , Herpesvirus Bovino 1/fisiologia , Ovinos , Carneiro da Montanha , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Ativação Viral , Latência Viral
2.
Biol Open ; 5(6): 745-55, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27185269

RESUMO

In the absence of livestock contact, recurring lamb mortality in bighorn sheep (Ovis canadensis) populations previously exposed to pneumonia indicates the likely presence of carriers of pneumonia-causing pathogens, and possibly inadequate maternally derived immunity. To investigate this problem we commingled naïve, pregnant ewes (n=3) with previously exposed rams (n=2). Post-commingling, all ewes and lambs born to them acquired pneumonia-causing pathogens (leukotoxin-producing Pasteurellaceae and Mycoplasma ovipneumoniae), with subsequent lamb mortality between 4-9 weeks of age. Infected ewes became carriers for two subsequent years and lambs born to them succumbed to pneumonia. In another experiment, we attempted to suppress the carriage of leukotoxin-producing Pasteurellaceae by administering an antibiotic to carrier ewes, and evaluated lamb survival. Lambs born to both treatment and control ewes (n=4 each) acquired pneumonia and died. Antibody titers against leukotoxin-producing Pasteurellaceae in all eight ewes were 'protective' (>1:800 and no apparent respiratory disease); however their lambs were either born with comparatively low titers, or with high (but non-protective) titers that declined rapidly within 2-8 weeks of age, rendering them susceptible to fatal disease. Thus, exposure to pneumonia-causing pathogens from carrier ewes, and inadequate titers of maternally derived protective antibodies, are likely to render bighorn lambs susceptible to fatal pneumonia.

3.
Infect Immun ; 83(10): 3982-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216418

RESUMO

Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin.


Assuntos
Exotoxinas/toxicidade , Mannheimia haemolytica/metabolismo , Pasteurelose Pneumônica/microbiologia , Doenças dos Ovinos/microbiologia , Acilação , Animais , Exotoxinas/metabolismo , Citometria de Fluxo , Pulmão/imunologia , Pulmão/microbiologia , Neutrófilos/imunologia , Pasteurelose Pneumônica/imunologia , Ovinos , Doenças dos Ovinos/imunologia , Carneiro da Montanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA