Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8471-8477, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405513

RESUMO

Thermoelectric materials have garnered significant interest for their potential to efficiently convert waste heat into electrical energy at room temperature without moving parts or harmful emissions. This study investigated the impact of the HOMO-LUMO (H-L) gap on the thermoelectric properties of three distinct classes of organic compounds: conjugated aromatics (isoindigos (IIGs)), quinoidal molecules (benzodipyrrolidones (BDPs)), and donor-acceptor systems (bis(pyrrol-2-yl)squaraines (BPSs)). These compounds were chosen for their structural simplicity and linear π-conjugated conductance paths, which promote high electrical conductance and minimize complications from quantum interference. Single-molecule thermoelectric measurements revealed that despite their low H-L gaps, the Seebeck coefficients of these compounds remain low. The alignment of the frontier orbitals relative to the Fermi energy was found to play a crucial role in determining the Seebeck coefficients, as exemplified by the BDP compounds. Theoretical calculations support these findings and suggest that anchor group selection could further enhance the thermoelectric behavior of these types of molecules.

2.
Materials (Basel) ; 16(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763505

RESUMO

Aqueous suspensions (colloids) containing detonation nano-diamond (DND) feature in most applications of DND and are an indispensable stage of its production; therefore, the interaction of DND with water is actively studied. However, insufficient attention has been paid to the unique physico-chemical and biological properties of transparent colloids with low DND content (≤0.1%), which are the subject of this review. Thus, such colloids possess giant dielectric permittivity which shows peculiar temperature dependence, as well as quasi-periodic fluctuations during slow evaporation or dilution. In these colloids, DND interacts with water and air to form cottonwool-like fibers comprising living micro-organisms (fungi and bacteria) and DND particles, with elevated nitrogen content due to fixation of atmospheric N2. Prolonged contact between these solutions and air lead to the formation of ammonium nitrate, sometimes forming macroscopic crystals. The latter was also formed during prolonged oxidation of fungi in aqueous DND colloids. The possible mechanism of N2 fixation is discussed, which can be attributable to the high reactivity of DND.

3.
Chemistry ; 29(30): e202300428, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36916635

RESUMO

Heterocyclic dimers consisting of combinations of butterfly-shaped phenothiazine (PTZ) and its chemically oxidized form phenothiazine-5,5-dioxide (PTZ(SO2 )) have been synthesized. A twist is imposed across the dimers by ortho-substituents including methyl ethers, sulfides and sulfones. X-ray crystallography, cyclic voltammetry and optical spectroscopy, underpinned by computational studies, have been employed to study the interplay between the oxidation state, conformational restriction, and emission mechanisms including thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP). While the PTZ(SO2 ) dimers are simple fluorophores, the presence of PTZ induces triplet-mediated emission with a mixed PTZ-PTZ(SO2 ) dimer displaying concentration dependent hallmarks of both TADF and RTP.

4.
J Phys Chem Lett ; 13(35): 8221-8227, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007139

RESUMO

Intramolecular hydrogen bonding between donor and acceptor segments in thermally activated delayed fluorescence (TADF) materials is now frequently employed to─purportedly─rigidify the structure and improve the emission performance of these materials. However, direct evidence for these intramolecular interactions is often lacking or ambiguous, leading to assertions that are largely speculative. Here we investigate a series of TADF-active materials incorporating pyridine, which bestows the potential ability to form intramolecular H-bonding interactions. Despite possible indications of H-bonding from an X-ray analysis, an array of other experimental investigations proved largely inconclusive. Instead, after examining computational potential energy surfaces of the donor-acceptor torsion angle we conclude that the pyridine group primarily alleviates steric congestion in our case, rather than enabling an H-bond interaction as elsewhere assumed. We suggest that many previously reported "H-bonding" TADF materials featuring similar chemical motifs may instead operate similarly and that investigation of potential energy surfaces should become a key feature of future studies.

5.
Chemistry ; 27(71): 17921-17927, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34705302

RESUMO

A series of cationic and neutral p-Br and p-NO2 pyridine substituted Eu(III) and Gd(III) coordination complexes serve as versatile synthetic intermediates. Nucleophilic aromatic substitution occurs readily at the para position under mild conditions, allowing C-N and C-C bond forming reactions to take place, permitting the introduction of azide, amino and alkynyl substituents. For Eu(III) complexes, this approach allows late stage tuning of absorption and emission spectral properties, exemplified by the lowering of the energy of an LMCT transition accompanied by a reduction in the Eu-Npy bond length. Additionally, these complexes provide direct access to the corresponding Eu(II) analogues. With the Gd(III) series, the nature of the p-substituent does not significantly change the EPR properties (linewidth, relaxation times), as required for their development as EPR spin probes that can be readily conjugated to biomolecules under mild conditions.


Assuntos
Complexos de Coordenação , Elementos da Série dos Lantanídeos , Piridinas
6.
Chem Sci ; 12(29): 9895-9901, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34349962

RESUMO

Herein we report the discovery of a new photochemical cascade process through a flow-based strategy for intercepting diradicals generated from simple alkenes. This continuous process delivers a series of unprecedented polycyclic reaction products. Exploring the scope of this novel process revealed that this approach is general and affords a variety of structurally complex reaction products in high yields (up to 81%), short reaction times (7 min) and high throughputs (up to 5.5 mmol h-1). A mechanistic rationale is presented that is supported by computations as well as isolation of key intermediates whose identity is confirmed by X-ray crystallography. The presented photochemical cascade process demonstrates the discovery of new chemical reactivity and complex chemical scaffolds by continuously generating and intercepting high-energy intermediates in a highly practical manner.

7.
Chem Mater ; 33(9): 3066-3080, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34267422

RESUMO

We investigate a series of D-A molecules consisting of spiro[acridan-9,9'-fluorene] as the donor and 2-phenylenepyrimidine as the acceptor. In two of the materials, a spiro center effectively electronically isolates the D unit from (consequently) optically innocent yet structurally influential adamantyl side groups. In a third material, adamantyl groups attached directly to the acceptor strongly influence the electronic properties. Steady-state and time-resolved photophysical studies in solution, Zeonex polymer matrix, and neat films reveal that the substituents impact the efficiency of vibronic coupling between singlet and triplet states relevant to reverse intersystem crossing (rISC) and thermally activated delayed fluorescence (TADF), without significantly changing the singlet-triplet gap in the materials. The adamantyl groups serve to raise the segmental mass and inertia, thereby damping intramolecular motions (both vibrational and rotational). This substitution pattern reveals the role of large-amplitude (primarily D-A dihedral angle rocking) motions on reverse intersystem crossing (rISC), as well as smaller contributions from low-amplitude or dampened vibrations in solid state. We demonstrate that rISC still occurs when the high-amplitude motions are suppressed in Zeonex and discuss various vibronic coupling scenarios that point to an underappreciated role of intersegmental motions that persist in rigid solids. Our results underline the complexity of vibronic couplings in the mediation of rISC and provide a synthetic tool to enable future investigations of vibronic coupling through selective mechanical dampening with no impact on electronic systems.

8.
Nanoscale ; 13(8): 4685-4686, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599666

RESUMO

Correction for 'Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives' by Hervé Dekkiche et al., Nanoscale, 2020, 12, 18908-18917, DOI: 10.1039/D0NR04413J.

9.
Chemistry ; 27(21): 6545-6556, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33560550

RESUMO

A series of four heterocyclic dimers has been synthesized, with twisted geometries imposed across the central linking bond by ortho-alkoxy chains. These include two isomeric bicarbazoles, a bis(dibenzothiophene-S,S-dioxide) and a bis(thioxanthene-S,S-dioxide). Spectroscopic and electrochemical methods, supported by density functional theory, have given detailed insights into how para- vs. meta- vs. broken conjugation, and electron-rich vs. electron-poor heterocycles impact the HOMO-LUMO gap and singlet and triplet energies. Crucially for applications as OLED hosts, the triplet energy (ET ) of these molecules was found to vary significantly between dilute polymer films and neat films, related to conformational demands of the molecules in the solid state. One of the bicarbazole species shows a variation in ET of 0.24 eV in the different media-sufficiently large to "make-or-break" an OLED device-with similar discrepancies found between neat films and frozen solution measurements of other previously reported OLED hosts. From consolidated optical and optoelectronic investigations of different host/dopant combinations, we identify that only the lower ET values measured in neat films give a reliable indicator of host/guest compatibility. This work also provides new molecular design rules for obtaining very high ET materials and controlling their HOMO and LUMO energies.

10.
Nat Mater ; 20(2): 175-180, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958877

RESUMO

Commercial carbazole has been widely used to synthesize organic functional materials that have led to recent breakthroughs in ultralong organic phosphorescence1, thermally activated delayed fluorescence2,3, organic luminescent radicals4 and organic semiconductor lasers5. However, the impact of low-concentration isomeric impurities present within commercial batches on the properties of the synthesized molecules requires further analysis. Here, we have synthesized highly pure carbazole and observed that its fluorescence is blueshifted by 54 nm with respect to commercial samples and its room-temperature ultralong phosphorescence almost disappears6. We discover that such differences are due to the presence of a carbazole isomeric impurity in commercial carbazole sources, with concentrations <0.5 mol%. Ten representative carbazole derivatives synthesized from the highly pure carbazole failed to show the ultralong phosphorescence reported in the literature1,7-15. However, the phosphorescence was recovered by adding 0.1 mol% isomers, which act as charge traps. Investigating the role of the isomers may therefore provide alternative insights into the mechanisms behind ultralong organic phosphorescence1,6-18.


Assuntos
Carbazóis/química , Carbazóis/síntese química , Temperatura
11.
J Org Chem ; 86(1): 429-445, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33251794

RESUMO

The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.

12.
J Am Chem Soc ; 142(44): 18769-18781, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33084308

RESUMO

There are notably few literature reports of electron donor-acceptor oligoynes, even though they offer unique opportunities for studying charge transport through "all-carbon" molecular bridges. In this context, the current study focuses on a series of carbazole-(C≡C)n-2,5-diphenyl-1,3,4-oxadiazoles (n = 1-4) as conjugated π-systems in general and explores their photophysical properties in particular. Contrary to the behavior of typical electron donor-acceptor systems, for these oligoynes, the rates of charge recombination after photoexcitation increase with increasing electron donor-acceptor distance. To elucidate this unusual performance, we conducted detailed photophysical and time-dependent density functional theory investigations. Significant delocalization of the molecular orbitals along the bridge indicates that the bridging states come into resonance with either the electron donor or acceptor, thereby accelerating the charge transfer. Moreover, the calculated bond lengths reveal a reduction in bond-length alternation upon photoexcitation, indicating significant cumulenic character of the bridge in the excited state. In short, strong vibronic coupling between the electron-donating N-arylcarbazoles and the electron-accepting 1,3,4-oxadiazoles accelerates the charge recombination as the oligoyne becomes longer.

13.
Nanoscale ; 12(36): 18908-18917, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32902546

RESUMO

We report the synthesis and the single-molecule transport properties of three new oligo(phenyleneethynylene) (OPE3) derivatives possessing terminal dihydrobenzo[b]thiophene (DHBT) anchoring groups and various core substituents (phenylene, 2,5-dimethoxyphenylene and 9,10-anthracenyl). Their electronic conductance and their Seebeck coefficient have been determined using scanning tunneling microscopy-based break junction (STM-BJ) experiments between gold electrodes. The transport properties of the molecular junctions have been modelled using DFT-based computational methods which reveal a specific binding of the sulfur atom of the DHBT anchor to the electrodes. The experimentally determined Seebeck coefficient varies between -7.9 and -11.4 µV K-1 in the series and the negative sign is consistent with charge transport through the LUMO levels of the molecules.

14.
Chempluschem ; 85(8): 1905-1911, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845079

RESUMO

Detonation-produced nanodiamond, both as a powder (with adsorbed water) and especially when suspended in an aqueous colloid, can support the growth (both aerobic and anaerobic) of bacteria and fungi. These were isolated and identified by microbiological methods, optical and electron microscopy, as species of Penicillium, Purpureocillium, Beaveria, Trichoderma and Aspergillus genera. The C : N molar ratio of the developing fibers (comprising fungal mycelia with attached bacteria and entrapped nanodiamond) decreased from 25 to 11 between the 1st and 10th week of incubation (cf. 40 in initial nanodiamond, 4.6 typical for bacteria and 8.3 for fungi), and from 4 to <1 after the 12th week, as the lysis of microorganisms releases carbon as CO2 and nitrogen as NH4+ or NO3- . The nitrogen content of the colloid increased by an order of magnitude and more, due to fixation of N2 by nanodiamond under ambient conditions.The process requires water but not necessarily oxygen present.


Assuntos
Coloides/química , Nanodiamantes/química , Fixação de Nitrogênio , Adsorção , Bactérias/ultraestrutura , Fungos/ultraestrutura , Microscopia Eletrônica de Varredura , Soluções , Propriedades de Superfície
15.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 392-399, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148882

RESUMO

The crystal structures of tris-[9,9-dihexyl-2-(5-meth-oxy-pyridin-2-yl-κN)-9H-fluoren-3-yl-κC 3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-µ2-chlorido-bis-{bis-[2-(5-fluoro-pyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-µ2-cyanato-bis-{bis-[9,9-dihexyl-2-(5-meth-oxy-pyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {µ-N,N'-bis-[3,5-bis-(tri-fluoro-meth-yl)phen-yl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2 C 1,N'}iridium)-chloro-benzene-pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-µ2-chloro and bis-µ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octa-hedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host mol-ecules and solvents of crystallization.

16.
Dalton Trans ; 49(7): 2190-2208, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32003389

RESUMO

Five new neutral heteroleptic iridium(iii) complexes IrL2(pic) (2-6) based on the archetypical blue emitter FIrpic have been synthesised. The cyclometallating ligands L are derived from 2-(2,6-F2-3-pyridyl)-4-mesitylpyridine (7), 2-(3-cyano-2,6-F2-phenyl)-4-mesitylpyridine (8), 2-(2,6-F2-phenyl)-4-[2,7-(HexO)2-9H-carbazol-9-yl]pyridine (9), 2-(2,6-F2-3-pyridyl)-4-[2,7-(HexO)2-9H-carbazol-9-yl]pyridine (10) and 2-(3-cyano-2,6-F2-phenyl)-4-[2,7-(HexO)2-9H-carbazol-9-yl]pyridine (11) for complexes 2, 3, 4, 5 and 6, respectively. The carbazole-functionalised ligands 9-11 show weak thermally activated delayed fluorescence (TADF) in solution. Complexes 5 and 6 reveal dual emission in polar solvents. A broad charge transfer (CT) band appears and increases in intensity relative to the higher energy emission band as solvent polarity is increased. The dual emission occurs when the energy of the ligand 3CT state is comparable to that of the 3MLCT state of the complex, resulting in fast interconversion between the two. Assignment of the ligand TADF and dual emission properties is supported by hybrid density functional theory (DFT) and time dependent DFT (TD-DFT) calculations. Phosphorescent organic light emitting devices (PhOLEDs) have been fabricated using these complexes as sky-blue emitters, and their performance is compared to devices using FIrpic and the previously reported complex IrL2(pic) 1 (L from the 2-(2,6-F2-phenyl)-4-mesitylpyridine ligand). For identical device structures, the device containing the carbazole complex 4 performs best out of the seven complexes. The dual emission observed in solution for complexes 5 and 6 is not observed in their devices.

17.
Angew Chem Int Ed Engl ; 59(2): 882-889, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31714641

RESUMO

As the field of molecular-scale electronics matures and the prospect of devices incorporating molecular wires becomes more feasible, it is necessary to progress from the simple anchor groups used in fundamental conductance studies to more elaborate anchors designed with device stability in mind. This study presents a series of oligo(phenylene-ethynylene) wires with one tetrapodal anchor and a phenyl or pyridyl head group. The new anchors are designed to bind strongly to gold surfaces without disrupting the conductance pathway of the wires. Conductive probe atomic force microscopy (cAFM) was used to determine the conductance of self-assembled monolayers (SAMs) of the wires in Au-SAM-Pt and Au-SAM-graphene junctions, from which the conductance per molecule was derived. For tolane-type wires, mean conductances per molecule of up to 10-4.37  G0 (Pt) and 10-3.78  G0 (graphene) were measured, despite limited electronic coupling to the Au electrode, demonstrating the potential of this approach. Computational studies of the surface binding geometry and transport properties rationalise and support the experimental results.

19.
Chem Commun (Camb) ; 55(94): 14115-14118, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31697292

RESUMO

The enantiomers of [EuL3]·3Cl, an analogue of Eu:BPEPC with a lowered energy excitation wavelength, serve as effective reference complexes for the calibration of circularly polarised luminescence (CPL) spectrometers.

20.
Molecules ; 24(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744074

RESUMO

A simple protocol yielding ortho-substituted nitrosophenols from phenols is demonstrated, in the form of copper(II) bis(nitrosophenolato) complexes. The developed methodology was applied to a range of substrates, confirming the role of the copper in both the formation and protection of the challenging 1, 2-substitution pattern. Using polymer supported thiourea, the Cu could be stripped from the complexes and thus enabled the isolation or identification of the uncoordinated ligands and their decomposition products, in yields generally low in line with the intrinsic high reactivity of 2-nitrosophenols. The product complexes are useful intermediates as demonstrated in revisiting a formal [4 + 2] cycloaddition with dimethylacetylene dicarboxylate to synthesise bicyclic products in variable yields, revealing the product has a novel structure different from those previously reported in the literature.


Assuntos
Cobre/química , Nitrosação , Compostos Organometálicos/química , Compostos Heterocíclicos/química , Ligantes , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA