Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676213

RESUMO

The Stingray sensor system is a 15-camera optical array dedicated to the nightly astrometric and photometric survey of the geosynchronous Earth orbit (GEO) belt visible above Tucson, Arizona. The primary scientific goal is to characterize GEO and near-GEO satellites based on their observable properties. This system is completely autonomous in both data acquisition and processing, with human oversight reserved for data quality assurance and system maintenance. The 15 ZWO ASI1600MM Pro cameras are mated to Sigma 135 mm f/1.8 lenses and are controlled simultaneously by four separate computers. Each camera is fixed in position and observes a 7.6-by-5.8-degree portion of the GEO belt, for a total of a 114-by-5.8-degree field of regard. The GAIA DR2 star catalog is used for image astrometric plate solution and photometric calibration to GAIA G magnitudes. There are approximately 200 near-GEO satellites on any given night that fall within the Stingray field of regard, and all those with a GAIA G magnitude brighter than approximately 15.5 are measured by the automated data reduction pipeline. Results from an initial one-month survey show an aggregate photometric uncertainty of 0.062 ± 0.008 magnitudes and astrometric accuracy consistent with theoretical sub-pixel centroid limits. Provided in this work is a discussion of the design and function of the system, along with verification of the initial survey results.

2.
Nature ; 623(7989): 938-941, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783227

RESUMO

Large constellations of bright artificial satellites in low Earth orbit pose significant challenges to ground-based astronomy1. Current orbiting constellation satellites have brightnesses between apparent magnitudes 4 and 6, whereas in the near-infrared Ks band, they can reach magnitude 2 (ref. 2). Satellite operators, astronomers and other users of the night sky are working on brightness mitigation strategies3,4. Radio emissions induce further potential risk to ground-based radio telescopes that also need to be evaluated. Here we report the outcome of an international optical observation campaign of a prototype constellation satellite, AST SpaceMobile's BlueWalker 3. BlueWalker 3 features a 64.3 m2 phased-array antenna as well as a launch vehicle adaptor (LVA)5. The peak brightness of the satellite reached an apparent magnitude of 0.4. This made the new satellite one of the brightest objects in the night sky. Additionally, the LVA reached an apparent V-band magnitude of 5.5, four times brighter than the current International Astronomical Union recommendation of magnitude 7 (refs. 3,6); it jettisoned on 10 November 2022 (Universal Time), and its orbital ephemeris was not publicly released until 4 days later. The expected build-out of constellations with hundreds of thousands of new bright objects1 will make active satellite tracking and avoidance strategies a necessity for ground-based telescopes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA