Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Chem ; 17(1): 120, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735663

RESUMO

BACKGROUND: Ritonavir was recently combined with nirmatrelvir in a new approved co-packaged medication form for the treatment of COVID-19. Quantitative analysis based on fluorescence spectroscopy measurement was extensively used for sensitive determination of compounds exhibited unique fluorescence features. OBJECTIVE: The main objective of this work was to develop higher sensitive cost effective spectrofluorometric method for selective determination of ritonavir in the presence of nirmatrelvir in pure form, pharmaceutical tablet as well as in spiked human plasma. METHODS: Ritonavir was found to exhibit unique native emission fluorescence at 404 nm when excited at 326 nm. On the other hand, nirmatrelvir had no emission bands when excited at 326 nm. This feature allowed selective determination of ritonavir without any interference from nirmatrelvir. The variables affecting fluorescence intensity of ritonavir were optimized in terms of sensitivity parameters and principles of green analytical chemistry. Ethanol was used a green solvent which provided efficient fluorescence intensity of the cited drug. RESULTS: The method was validated in accordance with the ICH Q2 (R1) standards in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and specificity. The described method was successfully applied for ritonavir assay over the concentration range of 2.0-20.0 ng/mL. CONCLUSION: Ritonavir determination in the spiked human plasma was successfully done with satisfactory accepted results.

2.
BMC Chem ; 17(1): 89, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501208

RESUMO

The environmentally friendly design of analytical methods is gaining interest in pharmaceutical analysis to reduce hazardous environmental impacts and improve safety and health conditions for analysts. The adaptation and integration of chemometrics in the development of environmentally friendly analytical methods is strongly recommended in the hope of promising benefits. Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of this work is to develop green, tuned spectrophotometric methods based on chemometric based models for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir has shown overlap to some extent, making simultaneous determination difficult. Three advanced chemometric models, classical least squares, principal component regression, and partial least squares, have been developed to provide resolution and spectrophotometric determination of the drugs under study. A five-level, two-factor experimental design has been used to create the described models. The spectrally recorded data of favipiravir and remdesivir has been reviewed. The noise region has been neglected as it has a negative impact on the significant data. On the other hand, the other spectral data provided relevant information about the investigated drugs. A comprehensive evaluation and interpretation of the results of the described models and a statistical comparison with accepted values have been considered. The proposed models have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form spiked human plasma. In addition, the environmental friendliness of the described models was evaluated using the analytical eco-scale, the green analytical procedure index and the AGREE evaluation method. The results showed the compliance of the described models with the environmental characteristics.

3.
BMC Chem ; 17(1): 58, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328879

RESUMO

Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult. Due to the considerable overlap, two ratio spectra manipulating spectrophotometric methods, namely, ratio difference and the first derivative of ratio spectra, enabled the determination of favipiravir and remdesivir in their pure forms and spiked plasma. The ratio spectra of favipiravir and remdesivir were derived by dividing the spectra of each drug by the suitable spectrum of another drug as a divisor to get the ratio spectra. Favipiravir was determined by calculating the difference between 222 and 256 nm of the derived ratio spectra, while calculating the difference between 247 and 271 nm of the derived ratio spectra enabled the determination of remdesivir. Moreover, the ratio spectra of every drug were transformed to the first order derivative using ∆λ = 4 and a scaling factor of 100. The first-order derivative amplitude values at 228 and 251.20 nm enabled the determination of favipiravir and remdesivir, respectively. Regarding the pharmacokinetic profile of favipiravir (Cmax 4.43 µg/mL) and remdesivir (Cmax 3027 ng/mL), the proposed methods have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in plasma matrix. Additionally, the greenness of the described methods was evaluated using three metrics systems: the national environmental method index, the analytical eco-scale, and the analytical greenness metric. The results demonstrated that the described models were in accordance with the environmental characteristics.

4.
Sci Rep ; 13(1): 10049, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344521

RESUMO

A computationally-assisted and green spectrophotometric method has been developed for the determination of fostemsavir, a recently FDA-approved drug used in combination with antiretroviral drugs to treat multidrug-resistant HIV-1 infection. The method was developed using computational studies and solvent selection based on green chemistry principles. The density functional theory method was employed to identify bromophenol blue as the preferred acid dye for efficient extraction of fostemsavir. The solvent selection process involved a careful evaluation of the green ranking of solvents, which led to the use of water as the solvent. The method involved the extraction of fostemsavir with bromophenol blue to form a yellow ion-pair complex, which exhibited maximally sharp peaks at 418 nm, enabling sensitive visible spectrophotometric determination of fostemsavir in bulk and pharmaceutical preparations. The extraction procedures were optimized, and the method was demonstrated to be sensitive over the concentration range of 2-12 µg/mL fostemsavir. Furthermore, the method was evaluated with respect to green chemistry principles using the analytical eco-scale, the green analytical method index, and analytical greenness metric approach, all of which confirmed that the data obtained by the proposed method were environmentally acceptable.


Assuntos
Azul de Bromofenol , Organofosfatos , Espectrofotometria/métodos , Solventes
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122808, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163899

RESUMO

Type 2 diabetes can be cured by using tradjenta (also known as Linagliptin), a new therapeutic drug that is an inhibitor of the dipeptidyl peptidase-4 enzyme. Tradjenta is administered orally alone or in combination with metiguanide or empagliflozin. An easy and specific fluorimetric analysis of Tradjenta was developed and demonstrated in the present investigation. The Hantzsch reaction method, which generates a fluorescent dihydropyridine derivative, is the basis of this assay. In a Toerell-Stenhagen buffered solution, the unsubstituted amine group of Tradjenta interacted with 2,4-Pentadione/Oxomethane. Spectrofluorimetry was utilized for this investigation at an excitation/emission wavelength of 421/480 nm. When comparing the Tradjenta concentration to the tracked fluorimetric signal, the method revealed linearity over the concentration range of 0.05 to 1.2 µg/mL. By strictly altering system parameters and analyzing the validation factors following International Council for Harmonisation (ICH) requirements, the outcomes were achieved. Finally, the proposed approach was successfully applied to assay the drug not only in its raw form and prescribed formulations but also to evaluate the tablet's uniformity of content.


Assuntos
Diabetes Mellitus Tipo 2 , Linagliptina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Corantes Fluorescentes , Fluorometria , Espectrometria de Fluorescência/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122880, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37216820

RESUMO

Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively. Direct simultaneous determination with normal fluorescence spectroscopy was difficult. The use of synchronous fluorescence spectroscopy for analyzing the studied drugs in ethanol at Δλ = 80 nm improved spectral resolution and enabled the determination of favipiravir and aspirin in the plasma matrix at 437 nm and 384 nm, respectively. The method described allowed sensitive determination of favipiravir and aspirin over a concentration range of 10-500 ng/mL and 35-1600 ng/mL, respectively. The described method was validated with respect to the ICH M10 guidelines and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in the spiked plasma matrix. Moreover, the compliance of the method with the concepts of environmentally friendly analytical chemistry was evaluated using two metrics, the Green Analytical Procedure Index and the AGREE tool. The results showed that the described method was consistent with the accepted metrics for green analytical chemistry.


Assuntos
Aspirina , COVID-19 , Humanos , Espectrometria de Fluorescência/métodos , Tratamento Farmacológico da COVID-19 , Etanol
7.
Sci Rep ; 13(1): 6165, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061601

RESUMO

Quantitative analysis of pharmaceutical compounds up to Nano gram levels is highly recommended to introduce feasible and sensitive tool for determination of the compounds in the pharmaceutical and biological samples. Nirmatrelvir plus ritonavir was recently approved in the US, the UK and Europe as a new co-packaged dosage form for the treatment of COVID-19. The objective of this work was to develop a more sensitive TLC method based on using ß-cyclodextrin as a chiral selector additive in the mobile phase for simultaneous determination of nirmatrelvir and ritonavir in pure form, pharmaceutical formulation and spiked human plasma. The analysis procedures were developed using TLC aluminum silica gel plates and methanol-water- 2% urea solution of ß-cyclodextrin (40:10:.5, by volume) as a mobile phase with UV detection at 215 nm. The developed method was successfully applied over a linearity range of 10-50 ng/band for both nirmatrelvir and ritonavir. The method was validated for limits of detection and quantitation, accuracy, precision, specificity, system suitability, and robustness. Furthermore, the eco-friendliness of the proposed method was assessed using the analytical eco-scale and the green analytical procedure index. The described method exhibited compliance with green analytical chemistry principles based on common green metric values.


Assuntos
COVID-19 , Ritonavir , Humanos , Cromatografia em Camada Fina/métodos , Tratamento Farmacológico da COVID-19 , Preparações Farmacêuticas
8.
Biomed Chromatogr ; 37(5): e5612, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36849127

RESUMO

The mixture of hyoscine N-butyl bromide (HBB) and ketoprofen (KTP) is commonly used for the handling of abdominal spasms and pain relief. There are two challenges that restrict the simultaneous assessment of HBB and KTP in biological fluids and pharmaceuticals. The first issue is the difficulty of elution of HBB and the second one is the presence of KTP as a racemic mixture in all pharmaceutical formulations, which obscures its appearance as a single peak. An ultrasensitive and highly efficient liquid chromatography-mass/mass spectrometric (LC-MS/MS) method is designed and validated for the first concurrent assessment of HBB and KTP in spiked human serum and urine, and pharmaceutical formulations. The estimated linearity ranges for HBB and KTP were respectively, 0.5-500 and 0.05-500 ng/ml, with excellent correlation coefficients. Validation results showed that the value of relative standard deviations were <2% for HBB and KTP. The mean extraction recoveries for HBB and KTP were, respectively, 91.04 and 97.83% in Spasmofen® ampoules; 95.89 and 97.00% in spiked serum; and 97.31 and 95.63% in spiked urine. The presented innovative chromatographic approach was utilized for the measurement of trace amounts of coexisting pharmaceuticals in pharmacokinetics studies and routine therapeutic medication monitoring.


Assuntos
Cetoprofeno , Humanos , Cetoprofeno/química , Brometo de Butilescopolamônio , Escopolamina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Preparações Farmacêuticas
9.
Sci Rep ; 13(1): 137, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599900

RESUMO

The greening of analytical methods has gained interest in the quantitative analysis field to reduce environmental impact and improve safety health conditions for analysts. Nirmatrelvir plus ritonavir is a new FDA approved co-packaged medication developed for the treatment of COVID-19. The aim of this research was to develop green fitted HPLC method using pre experimental computational testing of different stationary phases as well as selecting mobile phase regarding to green analytical chemistry principles. Computational study was designed to test the physical interaction between nirmatrelvir and ritonavir and different columns (C8, C18, Cyano column). The study showed that the C18 column was better for simultaneous HPLC analysis of the cited drugs. Regarding to green point of view, mobile phase consisted of ethanol: water (80:20, v/v) provided an efficient chromatographic separation of nirmatrelvir and ritonavir within a short analytical run time, reasonable resolution and excellent sensitivity. Isocratic elution was performed on a selected C18 column and a green adjusted mobile phase at flow rate of 1 mL/min and UV detection at 215 nm. The chromatographic system allowed complete baseline separation with retention times of 4.9 min for nirmatrelvir and 6.8 min for ritonavir. The method succeeded to determine nirmatrelvir and ritonavir over the concentration range of 1.0-20.0 µg/mL in the pure form and in pharmaceutical dosage form. Greenness profiles of the applied HPLC method was assessed using analytical eco-scale, the green analytical procedure index and the AGREE evaluation method. The results revealed adherence of the described method to the green analytical chemistry principles. The authors hope to provide a promising challenge for achieving green goals through integrating computational tools and applying them with green assessment metrics.


Assuntos
COVID-19 , Ritonavir , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Tratamento Farmacológico da COVID-19 , Lactamas , Preparações Farmacêuticas
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122265, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608515

RESUMO

Remdesivir and apixaban have been included in the treatment guidelines of several countries for severe COVID-19 infections. To date, no analytical method has been developed for the determination of remdesivir and apixaban in plasma matrix. The main objective of this work was to develop a highly sensitive, green-adapted spectrofluorometric method for the determination of remdesivir and apixaban at the Nanoscale. Remdesivir and apixaban showed overlapping fluorescence emission spectra at 403 nm and 456 nm when excited at 246 nm and 285 nm, respectively. This overlap was resolved in two steps. The first step was synchronous fluorescence scanning of remdesivir and apixaban, and the second step was manipulation of the second-order derivative for the obtained spectra. These steps allowed complete resolution of the overlapping fluorescence spectra and selective determination of remdesivir and apixaban at 410 and 469 nm, respectively. The variables affecting the synchronous scanning of the aforementioned drugs were optimized in terms of sensitivity parameters and principles of green analytical chemistry. The described method allowed sensitive determination of remdesivir and apixaban over the concentration range of 5-200 ng/mL and 50-3000 ng/mL, respectively. The described method was validated and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in spiked human plasma.


Assuntos
COVID-19 , Humanos , Tratamento Farmacológico da COVID-19 , Espectrometria de Fluorescência/métodos
11.
Arch Pharm (Weinheim) ; 355(12): e2200360, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36029269

RESUMO

Bacterial resistance is spreading in an alarming manner, outpacing the rate of development of new antibacterial agents and surging the need for effective alternatives. Prenylated flavonoids are a promising class of natural antibiotics with reported activity against a wide range of resistant pathogens. Here, a large library of natural flavonoids (1718 structures) was virtually screened for potential candidates inhibiting the B-subunit of gyrase (Gyr-B). Twenty-eight candidates, predominated by prenylated flavonoids, appeared as promising hits. Six of them were selected for further in vitro antibacterial and Gyr-B enzyme inhibitory activities. Auriculasin is presented as the most potent antibacterial candidate, with a MIC ranging from 2 to 4 µg/ml against two clinically isolated multidrug-resistant Escherichia coli strains. Mechanistic antibacterial analysis revealed auriculasin inhibitory activity towards the Gyr-B enzyme on the micromolar scale (IC50 = 0.38 ± 0.15 µM). Gyr-B interaction was further detailed by conducting an isothermal titration calorimetric experiment, which revealed a competitive inhibition with a high affinity for the Gyr-B active site, achieved mostly through enthalpic interactions (ΔGbinding = -10.69 kcal/mol). Molecular modeling and physics-based simulations demonstrated the molecule's manner of fitting inside the Gyr-B active site, indicating a very potential nucleus for the future generation of more potent derivatives. To conclude, prenylated flavonoids are interesting antibacterial candidates with anti-Gyr-B mechanism of action that can be obtained from a plant-derived flavonoid.


Assuntos
Escherichia coli , Flavonoides , Flavonoides/farmacologia , Flavonoides/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
12.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566130

RESUMO

Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.


Assuntos
Neoplasias , Nigella sativa , Benzoquinonas/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Epigênese Genética , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nigella sativa/metabolismo , Óleos de Plantas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA