Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nefrologia (Engl Ed) ; 44(1): 90-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37150673

RESUMO

INTRODUCTION: Activation of the focal adhesion kinase (FAK) in podocytes is involved in the pathogenesis of minimal change disease (MCD), but the pathway leading to its activation in this disease is unknown. Here, we tested whether podocyte ß1 integrin is the upstream modulator of FAK activation and podocyte injury in experimental models of MCD-like injury. METHODS: We used lipopolysaccharide (LPS) and MCD sera to induce MCD-like changes in vivo and in cultured human podocytes, respectively. We performed functional studies using specific ß1 integrin inhibitors in vivo and in vitro, and integrated histological analysis, western blotting, and immunofluorescence to assess for morphological and molecular changes in podocytes. By ELISA, we measured serum LPS levels in 35 children with MCD or presumed MCD (idiopathic nephrotic syndrome [INS]) and in 18 healthy controls. RESULTS: LPS-injected mice showed morphological (foot process effacement, and normal appearing glomeruli on light microscopy) and molecular features (synaptopodin loss, nephrin mislocalization, FAK phosphorylation) characteristic of human MCD. Administration of a ß1 integrin inhibitor to mice abrogated FAK phosphorylation, and ameliorated proteinuria and podocyte injury following LPS. Children with MCD/INS in relapse had higher serum LPS levels than controls. In cultured human podocytes, ß1 integrin blockade prevented cytoskeletal rearrangements following exposure to MCD sera in relapse. CONCLUSIONS: Podocyte ß1 integrin activation is an upstream mediator of FAK phosphorylation and podocyte injury in models of MCD-like injury.


Assuntos
Nefrose Lipoide , Síndrome Nefrótica , Podócitos , Criança , Camundongos , Humanos , Animais , Nefrose Lipoide/induzido quimicamente , Integrina beta1/metabolismo , Lipopolissacarídeos/metabolismo , Modelos Teóricos , Recidiva
2.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345660

RESUMO

Innate and adaptive immune cells modulate the severity of autosomal dominant polycystic kidney disease (ADPKD), a common kidney disease with inadequate treatment options. ADPKD has parallels with cancer, in which immune checkpoint inhibitors have been shown to reactivate CD8+ T cells and slow tumor growth. We have previously shown that in PKD, CD8+ T cell loss worsens disease. This study used orthologous early-onset and adult-onset ADPKD models (Pkd1 p.R3277C) to evaluate the role of immune checkpoints in PKD. Flow cytometry of kidney cells showed increased levels of programmed cell death protein 1 (PD-1)/cytotoxic T lymphocyte associated protein 4 (CTLA-4) on T cells and programmed cell death ligand 1 (PD-L1)/CD80 on macrophages and epithelial cells in Pkd1RC/RC mice versus WT, paralleling disease severity. PD-L1/CD80 was also upregulated in ADPKD human cells and patient kidney tissue versus controls. Genetic PD-L1 loss or treatment with an anti-PD-1 antibody did not impact PKD severity in early-onset or adult-onset ADPKD models. However, treatment with anti-PD-1 plus anti-CTLA-4, blocking 2 immune checkpoints, improved PKD outcomes in adult-onset ADPKD mice; neither monotherapy altered PKD severity. Combination therapy resulted in increased kidney CD8+ T cell numbers/activation and decreased kidney regulatory T cell numbers correlative with PKD severity. Together, our data suggest that immune checkpoint activation is an important feature of and potential novel therapeutic target in ADPKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Humanos , Animais , Camundongos , Antígeno B7-H1 , Rim , Terapia Combinada , Antígeno B7-1
3.
iScience ; 25(8): 104694, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35847557

RESUMO

Steroid-sensitive nephrotic syndrome (SSNS) in childhood is usually due to minimal change disease (MCD). Unlike many glomerular conditions, SSNS/MCD is commonly precipitated by respiratory infections. Of interest, pulmonary inflammation releases surfactants in circulation which are soluble agonists of SIRPα, a podocyte receptor that regulates integrin signaling. Here, we characterized this pulmonary-renal connection in MCD and performed studies to determine its importance. Children with SSNS/MCD in relapse but not remission had elevated plasma surfactants and urinary SIRPα. Sera from relapsing subjects triggered podocyte SIRPα signaling via tyrosine phosphatase SHP-2 and nephrin dephosphorylation, a marker of podocyte activation. Further, addition of surfactants to MCD sera from patients in remission replicated these findings. Similarly, nasal instillation of toll-like receptor 3 and 4 agonists in mice resulted in elevated serum surfactants and their binding to glomeruli triggering proteinuria. Together, our data document a critical pulmonary-podocyte signaling pathway involving surfactants and SIRPα signaling in SSNS/MCD.

4.
Kidney Int Rep ; 7(4): 797-809, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35497798

RESUMO

Introduction: Minimal change disease (MCD) is considered a podocyte disorder triggered by unknown circulating factors. Here, we hypothesized that the endothelial cell (EC) is also involved in MCD. Methods: We studied 45 children with idiopathic nephrotic syndrome (44 had steroid sensitive nephrotic syndrome [SSNS], and 12 had biopsy-proven MCD), 21 adults with MCD, and 38 healthy controls (30 children, 8 adults). In circulation, we measured products of endothelial glycocalyx (EG) degradation (syndecan-1, heparan sulfate [HS] fragments), HS proteoglycan cleaving enzymes (matrix metalloprotease-2 [MMP-2], heparanase activity), and markers of endothelial activation (von Willebrand factor [vWF], thrombomodulin) by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry. In human kidney tissue, we assessed glomerular EC (GEnC) activation by immunofluorescence of caveolin-1 (n = 11 MCD, n = 5 controls). In vitro, we cultured immortalized human GEnC with sera from control subjects and patients with MCD/SSNS sera in relapse (n = 5 per group) and performed Western blotting of thrombomodulin of cell lysates as surrogate marker of endothelial activation. Results: In circulation, median concentrations of all endothelial markers were higher in patients with active disease compared with controls and remained high in some patients during remission. In the MCD glomerulus, caveolin-1 expression was higher, in an endothelial-specific pattern, compared with controls. In cultured human GEnC, sera from children with MCD/SSNS in relapse increased thrombomodulin expression compared with control sera. Conclusion: Our data show that alterations involving the systemic and glomerular endothelium are nearly universal in patients with MCD and SSNS, and that GEnC can be directly activated by circulating factors present in the MCD/SSNS sera during relapse.

5.
Am J Physiol Renal Physiol ; 322(1): F105-F119, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866403

RESUMO

15-Lipoxygenase (15-LO) is a nonheme iron-containing dioxygenase that has both pro- and anti-inflammatory roles in many tissues and disease states. 15-LO is thought to influence macrophage phenotype, and silencing 15-LO reduces fibrosis after acute inflammatory triggers. The goal of the present study was to determine whether altering 15-LO expression influences inflammation and fibrogenesis in a murine model of unilateral ureteral obstruction (UUO). C57BL/6J mice, 15-LO knockout (Alox15-/-) mice, and 15-LO transgenic overexpressing (15LOTG) mice were subjected UUO, and kidneys were analyzed at 3, 10, and 14 days postinjury. Histology for fibrosis, inflammation, cytokine quantification, flow cytometry, and metabolomics were performed on injured tissues and controls. PD146176, a specific 15-LO inhibitor, was used to complement experiments involving knockout animals. Compared with wild-type animals undergoing UUO, Alox15-/- mouse kidneys had less proinflammatory, profibrotic message along with less fibrosis and macrophage infiltration. PD146176 inhibited 15-LO and resulted in reduced fibrosis and macrophage infiltration similar to Alox15-/- mice. Flow cytometry revealed that Alox15-/- UUO-injured kidneys had a dynamic change in macrophage phenotype, with an early blunting of CD11bHiLy6CHi "M1" macrophages and an increase in anti-inflammatory CD11bHiLy6CInt "M2c" macrophages and reduced expression of the fractalkine receptor chemokine (C-X3-C motif) receptor 1. Many of these findings were reversed when UUO was performed on 15LOTG mice. Metabolomics analysis revealed that wild-type kidneys developed a glycolytic shift postinjury, while Alox15-/- kidneys exhibited increased oxidative phosphorylation. In conclusion, 15-LO manipulation by genetic or pharmacological means induces dynamic changes in the inflammatory microenvironment in the UUO model and appears to be critical in the progression of UUO-induced fibrosis.NEW & NOTEWORTHY 15-Lipoxygenase (15-LO) has both pro- and anti-inflammatory functions in leukocytes, and its role in kidney injury and repair is unexplored. Our study showed that 15-LO worsens inflammation and fibrosis in a rodent model of chronic kidney disease using genetic and pharmacological manipulation. Silencing 15-LO promotes an increase in M2c-like wound-healing macrophages in the kidney and alters kidney metabolism globally, protecting against anaerobic glycolysis after injury.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Citocinas/metabolismo , Metabolismo Energético , Mediadores da Inflamação/metabolismo , Rim/enzimologia , Metaboloma , Nefrite/etiologia , Obstrução Ureteral/complicações , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Microambiente Celular , Citocinas/genética , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Fibrose , Rim/efeitos dos fármacos , Rim/patologia , Leucócitos/enzimologia , Inibidores de Lipoxigenase/farmacologia , Macrófagos/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/enzimologia , Nefrite/patologia , Nefrite/prevenção & controle , Fenótipo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/enzimologia , Obstrução Ureteral/patologia
6.
Front Med (Lausanne) ; 8: 761600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004732

RESUMO

Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.

7.
Am J Physiol Renal Physiol ; 316(4): F732-F742, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649890

RESUMO

In inflammatory diseases, the 5-lipoxygenase (5-LO) pathway contributes to epithelial damage and fibrosis by catalyzing the production of leukotrienes (LTs). Antagonists of the 5-LO pathway are currently approved for use in patients and are well tolerated. We found that expression of 5-LO is strongly induced in three models of chronic kidney disease: unilateral ureteral obstruction (UUO), folate nephropathy, and an orthologous mouse model of polycystic kidney disease. Immunohistochemistry showed that macrophages are the dominant source of 5-LO. Zileuton, a US Food and Drug Administration-approved antagonist of 5-LO, significantly reduced fibrosis at 7 and 14 days after UUO; these findings were confirmed using a genetically modified [5-LO-associated protein-knockout ( Alox5ap-/-)] mouse strain. Inhibition of 5-LO did not appear to change infiltration of leukocytes after UUO as measured by flow cytometry. However, fluorescence-lifetime imaging microscopy showed that 5-LO inhibitors reversed the glycolytic switch in renal tubular epithelial cells after UUO. Two downstream enzymes of 5-LO, LTA4 hydrolase (LTA4H) and LTC4 synthase (LTC4S), are responsible for the synthesis of LTB4 and cysteinyl LTs, respectively. Fibrosis was reduced after UUO in Ltc4s-/-, but not Lta4h-/-, mice. In contrast, using the folate nephropathy model, we found reduced fibrosis and improved renal function in both Ltc4s-/- and Lta4h-/- mice. In summary, our studies suggest that manipulation of the 5-LO pathway may represent a novel treatment approach for chronic kidney disease.


Assuntos
Rim/patologia , Inibidores de Lipoxigenase/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Animais , Araquidonato 5-Lipoxigenase/genética , Fibrose , Túbulos Renais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Renais Policísticas/tratamento farmacológico , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/etiologia
8.
J Lipid Res ; 59(2): 380-390, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229740

RESUMO

The group IVA calcium-dependent cytosolic phospholipase A2 (cPLA2α) enzyme directs a complex "eicosanoid storm" that accompanies the tissue response to injury. cPLA2α and its downstream eicosanoid mediators are also implicated in the pathogenesis of fibrosis in many organs, including the kidney. We aimed to determine the role of cPLA2α in bone marrow-derived cells in a murine model of renal fibrosis, unilateral ureteral obstruction (UUO). WT C57BL/6J mice were irradiated and engrafted with donor bone marrow from either WT mice [WT-bone marrow transplant (BMT)] or mice deficient in cPLA2α (KO-BMT). After full engraftment, mice underwent UUO and kidneys were collected 3, 7, and 14 days after injury. Using picrosirius red, collagen-3, and smooth muscle α actin staining, we determined that renal fibrosis was significantly attenuated in KO-BMT animals as compared with WT-BMT animals. Lipidomic analysis of homogenized kidneys demonstrated a time-dependent upregulation of pro-inflammatory eicosanoids after UUO; KO-BMT animals had lower levels of many of these eicosanoids. KO-BMT animals also had fewer infiltrating pro-inflammatory CD45+CD11b+Ly6Chi macrophages and reduced message levels of pro-inflammatory cytokines. Our results indicate that cPLA2α and/or its downstream mediators, produced by bone marrow-derived cells, play a major role in eicosanoid production after renal injury and in renal fibrinogenesis.


Assuntos
Medula Óssea/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Nefropatias/metabolismo , Obstrução Ureteral/metabolismo , Animais , Fibrose/metabolismo , Fibrose/patologia , Fosfolipases A2 do Grupo IV/deficiência , Fosfolipases A2 do Grupo IV/genética , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Obstrução Ureteral/patologia
9.
Prehosp Emerg Care ; 12(2): 169-75, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18379912

RESUMO

OBJECTIVES: To characterize the reasons pediatric emergency department (PED), patients access emergency medical services (EMS) for transport to the pediatric ED. To describe the acceptability of other modes of transport and alternative sites of care. METHODS: We included a convenience sample of the responsible adults accompanying pediatric patients who arrived via EMS to the PED of an academic medical center. We administered a survey to evaluate why they chose EMS and their feelings about alternative modes of transport (e.g., medical van, taxi) or alternative sites of care (e.g., urgent care center, primary care physician's office, or getting an appointment within 24 hours). RESULTS: One hundred thirty-eight surveys were completed. Pediatric patients averaged eight years of age. Trauma (44%) and seizures (17%) were the chief complaints. The primary reasons for EMS use were perceived medical necessity (54%) and security of transport by EMS (17%). Only transport by EMS was found to be acceptable. The responsible adults expressed acceptance of the PED (median=7, 1=not acceptable, 7=very acceptable) as a destination, more than their child's primary care doctor's (median=4), urgent care centers (median=3), or no transport and a physician appointment within 24 hours (median=1). CONCLUSIONS: Adults access the EMS system for children because of concerns regarding the acuity of illness and for the security of EMS transport. They were generally uninterested in transport by any mode other than EMS. However, they would accept transport to alternative sites for immediate care.


Assuntos
Comportamento de Escolha , Serviços Médicos de Emergência/estatística & dados numéricos , Serviço Hospitalar de Emergência , Hospitais Pediátricos , Transporte de Pacientes , Adolescente , Adulto , Feminino , Pesquisas sobre Atenção à Saúde , Humanos , Masculino , Pessoa de Meia-Idade , New York
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA