Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143440

RESUMO

The adhesion behavior of human tissue cells changes in vitro, when gravity forces affecting these cells are modified. To understand the mechanisms underlying these changes, proteins involved in cell-cell or cell-extracellular matrix adhesion, their expression, accumulation, localization, and posttranslational modification (PTM) regarding changes during exposure to microgravity were investigated. As the sialylation of adhesion proteins is influencing cell adhesion on Earth in vitro and in vivo, we analyzed the sialylation of cell adhesion molecules detected by omics studies on cells, which change their adhesion behavior when exposed to microgravity. Using a knowledge graph created from experimental omics data and semantic searches across several reference databases, we studied the sialylation of adhesion proteins glycosylated at their extracellular domains with regards to its sensitivity to microgravity. This way, experimental omics data networked with the current knowledge about the binding of sialic acids to cell adhesion proteins, its regulation, and interactions in between those proteins provided insights into the mechanisms behind our experimental findings, suggesting that balancing the sialylation against the de-sialylation of the terminal ends of the adhesion proteins' glycans influences their binding activity. This sheds light on the transition from two- to three-dimensional growth observed in microgravity, mirroring cell migration and cancer metastasis in vivo.


Assuntos
Adesão Celular , Processamento de Proteína Pós-Traducional , Ausência de Peso , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Bases de Dados Factuais , Matriz Extracelular/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrinas/metabolismo , Células MCF-7 , Camundongos , Metástase Neoplásica , Domínios Proteicos , Proteoma , Ácidos Siálicos/química
2.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731625

RESUMO

With the commercialization of spaceflight and the exploration of space, it is important to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We examined the influence of r-µg, simulated microgravity (s-µg, incubator random positioning machine (iRPM)), hypergravity (hyper-g), and vibration (VIB) on triple-negative breast cancer (TNBC) cells (MDA-MB-231 cell line) with the aim to study early changes in the gene expression of factors associated with cell adhesion, apoptosis, nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. We had the opportunity to attend a parabolic flight (PF) mission and to study changes in RNA transcription in the MDA-MB cells exposed to PF maneuvers (29th Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). PF maneuvers induced an early up-regulation of ICAM1, CD44 and ERK1 mRNAs after the first parabola (P1) and a delayed upregulation of NFKB1, NFKBIA, NFKBIB, and FAK1 after the last parabola (P31). ICAM-1, VCAM-1 and CD44 protein levels were elevated, whereas the NF-κB subunit p-65 and annexin-A2 protein levels were reduced after the 31st parabola (P31). The PRKCA, RAF1, BAX mRNA were not changed and cleaved caspase-3 was not detectable in MDA-MB-231 cells exposed to PF maneuvers. Hyper-g-exposure of the cells elevated the expression of CD44 and NFKBIA mRNAs, iRPM-exposure downregulated ANXA2 and BAX, whereas VIB did not affect the TNBC cells. The early changes in ICAM-1 and VCAM-1 and the rapid decrease in the NF-κB subunit p-65 might be considered as fast-reacting, gravity-regulated and cell-protective mechanisms of TNBC cells exposed to altered gravity conditions. This data suggest a key role for the detected gravity-signaling elements in three-dimensional growth and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Adesão Celular/fisiologia , Ausência de Peso , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Receptores de Hialuronatos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Simulação de Ausência de Peso
3.
J Biomed Inform ; 100: 103320, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669288

RESUMO

If monolayers of cancer cells are exposed to microgravity, some of the cells cease adhering to the bottom of a culture flask and join three-dimensional aggregates floating in the culture medium. Searching reasons for this change in phenotype, we performed proteome analyses and learnt that accumulation and posttranslational modification of proteins involved in cell-matrix and cell-cell adhesion are affected. To further investigate these proteins, we developed a methodology to find histological images about focal adhesion complex (FA) proteins. Selecting proteins expressed by human FTC-133 and MCF-7 cancer cells and known to be incorporated in FA, we transformed the experimental data to RDF to establish a core semantic knowledgebase. Applying iterative SPARQL queries to Linked Open Databases, we augmented these data with additional functional, transformation- and aggregation-related relationships. Using reasoning, we retrieved publications with images about the spatial arrangement of proteins incorporated in FA. Contextualizing those images enabled us to gain insights about FA of cells changing their site of growth, and to independently validate our experimental results. This new way to link experimental proteome data to biomedical knowledge from various sources via searching images may generally be applied in science when images are a tool of knowledge dissemination.


Assuntos
Adesões Focais , Proteínas de Neoplasias/metabolismo , Neoplasias/patologia , Proteômica , Semântica , Humanos , Bases de Conhecimento , Células MCF-7
4.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261642

RESUMO

With the increasing number of spaceflights, it is crucial to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We tested the effect of r-µg on MCF-7 breast cancer cells with the objective to investigate cytoskeletal alterations and early changes in the gene expression of factors belonging to the cytoskeleton, extracellular matrix, focal adhesion, and cytokines. In the Technische Experimente unter Schwerelosigkeit (TEXUS) 54 rocket mission, we had the opportunity to conduct our experiment during 6 min of r-µg and focused on cytoskeletal alterations of MCF-7 breast cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin as well as the mCherry-tubulin fusion protein using the Fluorescence Microscopy Analysis System (FLUMIAS) for fast live-cell imaging under r-µg. Moreover, in a second mission we investigated changes in RNA transcription and morphology in breast cancer cells exposed to parabolic flight (PF) maneuvers (31st Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). The MCF-7 cells showed a rearrangement of the F-actin and tubulin with holes, accumulations in the tubulin network, and the appearance of filopodia- and lamellipodia-like structures in the F-actin cytoskeleton shortly after the beginning of the r-µg period. PF maneuvers induced an early up-regulation of KRT8, RDX, TIMP1, CXCL8 mRNAs, and a down-regulation of VCL after the first parabola. E-cadherin protein was significantly reduced and is involved in cell adhesion processes, and plays a significant role in tumorigenesis. Changes in the E-cadherin protein synthesis can lead to tumor progression. Pathway analyses indicate that VCL protein has an activating effect on CDH1. In conclusion, live-cell imaging visualized similar changes as those occurring in thyroid cancer cells in r-µg. This result indicates the presence of a common mechanism of gravity perception and sensation.


Assuntos
Neoplasias da Mama/metabolismo , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Voo Espacial , Ausência de Peso , Actinas/genética , Actinas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Citoesqueleto/química , Feminino , Adesões Focais/química , Humanos , Células MCF-7 , Tubulina (Proteína)/metabolismo , Vinculina/genética , Vinculina/metabolismo
5.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545079

RESUMO

Thyroid cancer is the most abundant tumor of the endocrine organs. Poorly differentiated thyroid cancer is still difficult to treat. Human cells exposed to long-term real (r-) and simulated (s-) microgravity (µg) revealed morphological alterations and changes in the expression profile of genes involved in several biological processes. The objective of this study was to examine the effects of short-term µg on poorly differentiated follicular thyroid cancer cells (FTC-133 cell line) resulting from 6 min of exposure to µg on a sounding rocket flight. As sounding rocket flights consist of several flight phases with different acceleration forces, rigorous control experiments are mandatory. Hypergravity (hyper-g) experiments were performed at 18g on a centrifuge in simulation of the rocket launch and s-µg was simulated by a random positioning machine (RPM). qPCR analyses of selected genes revealed no remarkable expression changes in controls as well as in hyper-g samples taken at the end of the first minute of launch. Using a centrifuge initiating 18g for 1 min, however, presented moderate gene expression changes, which were significant for COL1A1, VCL, CFL1, PTK2, IL6, CXCL8 and MMP14. We also identified a network of mutual interactions of the investigated genes and proteins by employing in-silico analyses. Lastly, µg-samples indicated that microgravity is a stronger regulator of gene expression than hyper-g.


Assuntos
Hipergravidade , Voo Espacial , Neoplasias da Glândula Tireoide/patologia , Ausência de Peso , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas de Membrana/metabolismo , Neoplasias da Glândula Tireoide/genética
6.
Org Biomol Chem ; 16(7): 1172-1177, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376180

RESUMO

A hydride transfer reaction with tertiary amines was observed in the presence of noble metals on a carbon support. Hydride transfer had been documented previously in terms of activated allyl-type carbon-carbon double bonds containing carbonyl derivatives in the presence of triethyl amine (conjugate reduction). The proposed mechanism is a hydride transfer reaction in which the metal serves as the reaction partner of the hydrido-metal iminium adduct formation. The saturation of a non-activated internal double bond containing compound, such as methyl oleate and trans-5-decene as substrates, was observed for the first time in this work. The pre-reduced catalyst samples showed high activity; in the presence of Pd/C, Pt/C and Rh/C partial to complete conversion was detected at 140 °C in a p-xylene solvent without molecular hydrogen. Higher molecular weight byproducts of the amines were formed, while in the case of the substrates negligible amounts of unreacted but double bond migrated species were present. There is a possibility of usage of alkyl amines other than triethylamine; thus use of tributyl-, tripentyl-, trihexylamine and N,N-diisopropylethylamine, as well as cyclic 1-ethylpyrrolidine and 1-ethylpiperidine, was investigated. Cyclic amines and diisopropyl derivatives as H sources produced the highest conversion, while amines with longer alkyl chains showed minor activity. As a clear indication of H-donation, the formation of unsaturated amine species such as 1-ethyl-pyrrole and pyridine was observed.

7.
Prep Biochem Biotechnol ; 42(3): 217-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509848

RESUMO

Countercurrent centrifugal elutriation (CCE) is a cell separation technique that separates particles predominantly according to their size, and to some degree according to their specific density, without a need for antibodies or ligands tagging cell surfaces. The principles of this technique have been known for half a century. Still, numerous recent publications confirmed that CCE is a valuable supplement to current cell separation technology. It is mainly applied when homogeneous populations of cells, which mirror an in vivo situation, are required for answering scientific questions or for clinical transplantation, while antibodies or ligands suitable for cell isolation are not available. Currently, new technical developments are expanding its application toward fractionation of healthy and malignant tissue cells and the preparation of dendritic cells for immunotherapy.


Assuntos
Separação Celular/instrumentação , Separação Celular/métodos , Centrifugação com Gradiente de Concentração/métodos , Apoptose , Células Sanguíneas/citologia , Células da Medula Óssea/citologia , Contagem de Células , Ciclo Celular , Tamanho Celular , Centrifugação com Gradiente de Concentração/instrumentação , Humanos , Tamanho da Partícula , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA