Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 23(16): e202200552, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35980112

RESUMO

The front cover artwork is provided by the group of Prof. Dr. Christian Papp at Physical Chemistry II of FAU Erlangen-Nürnberg and FU Berlin. The image shows the isomerization reaction of the molecule pair 2,3-dicyano-norbornadiene/quadricyclane as potential molecular solar thermal (MOST) energy storage system. Read the full text of the Research Article at 10.1002/cphc.202200199.

2.
Chemphyschem ; 23(16): e202200199, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35612821

RESUMO

Molecular solar thermal (MOST) systems are a promising approach for the introduction of sustainable energy storage solutions. We investigated the feasibility of the dicyano-substituted norbornadiene/quadricyclane molecule pair on Ni(111) for catalytic model studies. This derivatization is known to lead to a desired bathochromic shift of the absorption maximum of the parent compound. In our experiments further favorable properties were found: At low temperatures, both molecules adsorb intact without any dissociation. In situ temperature-programmed HR-XPS experiments reveal the conversion of (CN)2 -quadricyclane to (CN)2 -norbornadiene under energy release between 175 and 260 K. The absence of other surface species due to side reactions indicates full isomerization. Further heating leads to the decomposition of the molecular framework into smaller carbonaceous fragments above 290 K and finally to amorphous structures, carbide and nitride above 400 K. DFT calculations gave insights into the adsorption geometries. (CN)2 -norbornadiene is expected to interact stronger with the surface, with flat configurations being favorable. (CN)2 -quadricyclane exhibits smaller adsorption energies with negligible differences for flat and side-on geometries. Simulated XP spectra are in good agreement with experimental findings further supporting the specific spectroscopic fingerprints for both valence isomers.

3.
J Med Chem ; 64(14): 9906-9915, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34197114

RESUMO

We have designed a new class of highly potent bivalent melanocortin receptor ligands based on the nature-derived bicyclic peptide sunflower trypsin inhibitor 1 (SFTI-1). Incorporation of melanotropin pharmacophores in each of the two turn regions of SFTI-1 resulted in substantial gains in agonist activity particularly at human melanocortin receptors 1 and 3 (hMC1R/hMC3R) compared to monovalent analogues. In in vitro binding and functional assays, the most potent molecule, compound 6, displayed low picomolar agonist activity at hMC1R (pEC50 > 10.3; EC50 < 50 pM; pKi: 10.16 ± 0.04; Ki: 69 ± 5 pM) and is at least 30-fold more selective for this receptor than for hMC3R, hMC4R, or hMC5R. The results are discussed in the context of structural homology models of hMCRs in complex with the developed bivalent ligands.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
4.
Chemistry ; 27(52): 13172-13180, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34254706

RESUMO

We present detailed studies on the covalent adsorption of molecular oxygen and atomic hydrogen on the hexagonal boron nitride (h-BN) nanomesh on Rh(111). The functionalization of this two-dimensional (2D) material was investigated under ultra-high vacuum conditions using synchrotron radiation-based in situ high-resolution X-ray photoelectron spectroscopy, temperature-programmed X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. We are able to provide a deep insight into the adsorption behavior and thermal stability of oxygen and hydrogen on h-BN/Rh(111). Oxygen functionalization was achieved via a supersonic molecular beam while hydrogen functionalization was realized using an atomic hydrogen source. Adsorption of the respective species was observed to occur selectively in the pores of h-BN leading to spatially defined modification of the 2D layer. The adsorption of the observed molecular oxygen species was found to be an activated process that requires high-energy oxygen molecules. Upon heating to 700 K, oxygen functionalization was observed to be almost reversible except for small amounts of boron oxides evolving due to the reaction of oxygen with the 2D material. Hydrogen functionalization of h-BN/Rh(111) was fully reversed upon heating to about 640 K.

5.
J Chem Phys ; 152(22): 224710, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534549

RESUMO

We present well-ordered Pt nanocluster arrays supported on the h-BN/Rh(111) Moiré as a model system for an ethylene dehydrogenation catalyst. Thereby, the h-BN nanomesh serves as a chemically inert eggbox-like template for clusters with a narrow size distribution. The thermal evolution of ethylene is investigated by synchrotron-based high-resolution in situ x-ray photoelectron spectroscopy on the Pt nanoclusters. We compare our results with data on Pt(111) and Pt(355). Interestingly, the Pt nanoclusters and Pt(355) behave very similarly. Both open a new reaction pathway via vinylidene in addition to the route via ethylidyne known for Pt(111). Due to the importance of coking in ethylene dehydrogenation on Pt catalysts, we also studied C2H4 adsorption and decomposition on carbon precovered Pt nanoclusters. While the amount of adsorbed ethylene decreases linearly with the carbon coverage, we found that edge sites are more affected than facet sites and that the vinylidene reaction pathway is effectively suppressed by carbon residues.

6.
J Chem Phys ; 151(14): 144711, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615244

RESUMO

Among other N-heterocycles, indole and its substituted derivatives, such as methylindoles, are considered promising Liquid Organic Hydrogen Carriers (LOHCs) for the storage of renewable energy. We used X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and density-functional theory (DFT) to investigate the low temperature adsorption and consecutive dehydrogenation reaction during heating of 2-methylindole, 2-methylindoline, and 2-methyloctahydroindole on Pt(111) and their viability as the LOHC system. In the photoemission experiments, for all Hx-2-methylindoles, we find deprotonation at the NH bond starting between 240 and 300 K, resulting in a 2-methylindolide species. Simultaneously or before this reaction step, the dehydrogenation of 2-methyloctahydroindole via 2-methylindoline and 2-methylindole intermediates is observed. For 2-methyloctahydroindole, we also find π-allyl intermediates above 230 K. Starting at ∼390 K, decomposition of the remaining 2-methylindolide species takes place under the conditions of our surface science experiments. DFT calculations give insight into the relative energies of the various species, reaction intermediates, and their isomers both in the gas phase and on the Pt(111) surface.

7.
Phys Chem Chem Phys ; 21(38): 21287-21295, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31549113

RESUMO

The h-BN nanomesh on Rh(111) is used as eggbox-like template for the formation of arrays of Pt nanoclusters with a narrow size distribution. Nanoclusters with sizes from 1 up to 50 atoms are prepared simultaneously in a wedge-like structure by depositing a coverage gradient on the h-BN nanomesh, and thus can be investigated under identical conditions. We studied the preparation and properties of these Pt nanoclusters of different size in situ by high-resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy. For a Pt coverage of 0.1 ML, all pores of the h-BN nanomesh are filled with nanoclusters with a remarkably uniform cluster size of ≈12 Pt atoms per pore, and high stability up to 400 K. Above 0.2 ML Pt, the clusters are less stable. The coverage dependent analysis shows that for Pt coverages below 0.1 ML, the number of nanoclusters is smaller - and the number of empty pores higher - than expected for a simple hit and stick mechanism. We assign this behavior to an initially higher mobility of the Pt atoms in a hot precursor state.

8.
Chemistry ; 25(37): 8884-8893, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30968974

RESUMO

The interaction of single-layer hexagonal boron nitride (h-BN) on Ni(111) with molecular oxygen from a supersonic molecular beam led to a covalently bonded molecular oxygen species, which was identified as being between a superoxide and a peroxide. This is a rare example of an activated adsorption process leading to a molecular adsorbate. The amount of oxygen functionalization depended on the kinetic energy of the molecular beam. For a kinetic energy of 0.7 eV, an oxygen coverage of 0.4 ML was found. Near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy revealed a stronger bond of h-BN to the Ni(111) substrate in the presence of the covalently bound oxygen species. Oxygen adsorption also led to a shift of the valence bands to lower binding energies. Subsequent temperature-programmed X-ray photoelectron spectroscopy revealed that the oxygen boron bonds are stable up to approximately 580 K, when desorption, and simultaneously, etching of h-BN set in. The experimental results were substantiated by density functional theory calculations, which provided insight to the adsorption geometry, the adsorption energy and the reaction pathway.

9.
J Chem Phys ; 149(16): 164709, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384738

RESUMO

Together with borazine, ammonia borane is a prominent precursor molecule for the formation of hexagonal boron nitride, which is of high interest as a 2D-material and graphene analog. Ammonia borane is also a possible solid hydrogen carrier for renewable energies with high storage density. Using X-ray photoelectron spectroscopy and temperature-programmed desorption, we investigated low-temperature adsorption and dehydrogenation during heating of borazine and ammonia borane on Ni(111) to form h-BN. For borazine, we observe the formation of disordered boron nitride above 300 K, which starts to form hexagonal boron nitride above 600 K. Ammonia borane shows multiple dehydrogenation steps at the boron and nitrogen atoms up to 300 K. This results in various BHxNHy species, including borazine-like intermediates, before the formation of disordered boron nitride and finally hexagonal boron nitride, analogous to the borazine decomposition.

10.
Phys Chem Chem Phys ; 20(33): 21294-21301, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30087976

RESUMO

Alloy catalysts have, in many cases, superior properties compared to their single metal counterparts. To gain deeper insights, we used graphene-supported bimetallic nanocluster arrays as a model system. We investigated the site occupation and the dynamic behavior of the metal distribution during adsorption and thermal treatment of CO layers on PdPt alloy nanocluster arrays supported on the graphene/Rh(111) Moiré. We find that the adsorption of CO combined with heating to 550 K leads to a rearrangement of the surface atoms, resulting in all the edge sites of the nanoclusters being occupied by Pd atoms. At the same time, Pt gets enriched at the surface.

11.
J Alzheimers Dis ; 64(s1): S547-S554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29758944

RESUMO

Spanning over three decades of extensive drug discovery research, the efforts to develop a potent and selective GSK3 inhibitor as a therapeutic for the treatment of type 2 diabetes, Alzheimer's disease (AD), bipolar disorders and cancer have been futile. Since its initial discovery in 1980 and subsequent decades of research, one cannot underscore the importance of the target and the promise of a game changing disease modifier. Several pharmaceutical companies, biotech companies, and academic institutions raged in a quest to unravel the biology and discover potent and selective GSK3 inhibitors, some of which went through clinical trials. However, the conundrum of what happened to the fate of the AstraZeneca's GSK3 inhibitors and the undertaking to find a therapeutic that could control glycogen metabolism and aberrant tau hyperphosphorylation in the brain, and rescue synaptic dysfunction has largely been untold. AstraZeneca was in the forefront of GSK3 drug discovery research with six GSK3 drug candidates, one of which progressed up to Phase II clinical trials in the quest to untangle the tau hypothesis for AD. Analysis of key toxicity issues, serendipitous findings and efficacy, and biomarker considerations in relation to safety margins have limited the potential of small molecule therapeutics as a way forward. To guide future innovation of this important target, we reveal the roller coaster journey comprising of two decades of preclinical and clinical GSK3 drug discovery at AstraZeneca; the understanding of which could lead to improved GSK3 therapies for disease. These learnings in combination with advances in achieving kinase selectivity, different modes of action as well as the recent discovery of novel conjugated peptide technology targeting specific tissues have potentially provided a venue for scientific innovation and a new beginning for GSK3 drug discovery.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Ensaios Clínicos como Assunto , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos
12.
J Med Chem ; 61(8): 3674-3684, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29605997

RESUMO

Ultrastable cyclic peptide frameworks offer great potential for drug design due to their improved bioavailability compared to their linear analogues. Using the sunflower trypsin inhibitor-1 (SFTI-1) peptide scaffold in combination with systematic N-methylation of the grafted pharmacophore led to the identification of novel subtype selective melanocortin receptor (MCR) agonists. Multiple bicyclic peptides were synthesized and tested toward their activity at MC1R and MC3-5R. Double N-methylated compound 18 showed a p Ki of 8.73 ± 0.08 ( Ki = 1.92 ± 0.34 nM) and a pEC50 of 9.13 ± 0.04 (EC50 = 0.75 ± 0.08 nM) at the human MC1R and was over 100 times more selective for MC1R. Nuclear magnetic resonance structural analysis of 18 emphasized the role of peptide bond N-methylation in shaping the conformation of the grafted pharmacophore. More broadly, this study highlights the potential of cyclic peptide scaffolds for epitope grafting in combination with N-methylation to introduce receptor subtype selectivity in the context of peptide-based drug discovery.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/agonistas , Desenho de Fármacos , Células HEK293 , Helianthus/química , Humanos , Metilação , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
13.
Chemphyschem ; 19(12): 1432-1440, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29537698

RESUMO

We have investigated the adsorption and thermal reactivity of CO and C2 H4 on well-defined bimetallic Ptx Ag1-x /Pt(111) surface alloys (with x=0.67, 0.50, 0.38 and 0.32) using in situ synchrotron-based high-resolution X-ray photoelectron spectroscopy. During low-temperature (140 K) adsorption of CO, we find population of the energetically more stable Pt on-top site followed by the Pt bridge site, as known from clean Pt(111); CO does not adsorb on Ag facets under the applied conditions. The total CO coverage linearly decreases with Ag surface content. Upon heating, COon-top and CObridge desorb at higher temperatures than on bare Pt(111), for example, by ∼65 K for COon-top for an Ag content of 33 %. This shift is due to the well-known electronic ligand-effect of Ag atoms surrounding Pt atoms/clusters. For C2 H4 adsorption on the AgPt alloys at low temperature (120 K), we find two species in the C1s XP spectrum, each displaying a vibrational fine structure; this contrasts the situation on clean Pt(111), where only one species is found. Upon heating, ethylene reacts with ethylidyne being the dominant intermediate; in contrast to clean Pt(111), on the alloy surfaces the reaction to CCH3 occurs at much lower temperatures, e. g. by ∼60 K for the alloy with 68 % Ag, and no ethylene desorption is found.

14.
Chemistry ; 23(59): 14806-14818, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28815946

RESUMO

Indole derivatives were recently proposed as potential liquid organic hydrogen carriers (LOHC) for storage of renewable energies. In this work, we have investigated the adsorption, dehydrogenation and degradation mechanisms in the indole/indoline/octahydroindole system on Pt(111). We have combined infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS) and DFT calculations. Indole multilayers show a crystallization transition at 200 K, in which the molecules adopt a strongly tilted orientation, before the multilayer desorbs at 220 K. For indoline, a less pronounced restructuring transition occurs at 150 K and multilayer desorption is observed at 200 K. Octahydroindole multilayers desorb already at 185 K, without any indication for restructuring. Adsorbed monolayers of all three compounds are stable up to room temperature and undergo deprotonation at the NH bond above 300 K. For indoline, the reaction is followed by partial dehydrogenation at the 5-membered ring, leading to the formation of a flat-lying di-σ-indolide in the temperature range from 330-390 K. Noteworthy, the same surface intermediate is formed from indole. In contrast, the reaction of octahydroindole with Pt(111) leads to the formation of a different intermediate, which originates from partial dehydrogenation of the 6-membered ring. Above 390 K, all three compounds again form the same strongly dehydrogenated and partially decomposed surface species.

15.
J Phys Chem Lett ; 8(13): 2819-2825, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28565910

RESUMO

The two valence isomers norbornadiene (NBD) and quadricyclane (QC) enable solar energy storage in a single molecule system. We present a new photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) experiment, which allows monitoring of the complete energy storage and release cycle by in situ vibrational spectroscopy. Both processes were investigated, the photochemical conversion from NBD to QC using the photosensitizer 4,4'-bis(dimethylamino)benzophenone (Michler's ketone, MK) and the electrochemically triggered cycloreversion from QC to NBD. Photochemical conversion was obtained with characteristic conversion times on the order of 500 ms. All experiments were performed under full potential control in a thin-layer configuration with a Pt(111) working electrode. The vibrational spectra of NBD, QC, and MK were analyzed in the fingerprint region, permitting quantitative analysis of the spectroscopic data. We determined selectivities for both the photochemical conversion and the electrochemical cycloreversion and identified the critical steps that limit the reversibility of the storage cycle.

16.
Chemistry ; 23(7): 1613-1622, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27870528

RESUMO

We have investigated the surface chemistry of the polycyclic valence-isomer pair norbornadiene (NBD) and quadricyclane (QC) on Pt(111). The NBD/QC system is considered to be a prototype for energy storage in strained organic compounds. By using a multimethod approach, including UV photoelectron, high-resolution X-ray photoelectron, and IR reflection-absorption spectroscopic analysis and DFT calculations, we could unambiguously identify and differentiate between the two molecules in the multilayer phase, which implies that the energy-loaded QC molecule is stable in this state. Upon adsorption in the (sub)monolayer regime, the different spectroscopies yielded identical spectra for NBD and QC at 125 and 160 K, when multilayer desorption takes place. This behavior is explained by a rapid cycloreversion of QC to NBD upon contact with the Pt surface. The NBD adsorbs in a η2 :η1 geometry with an agostic Pt-H interaction of the bridgehead CH2 subunit and the surface. Strong spectral changes are observed between 190 and 220 K because the hydrogen atom that forms the agostic bond is broke. This reaction yields a norbornadienyl intermediate species that is stable up to approximately 380 K. At higher temperatures, the molecule dehydrogenates and decomposes into smaller carbonaceous fragments.

17.
ChemSusChem ; 9(12): 1424-32, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27094340

RESUMO

We have investigated the electrochemically triggered cycloreversion of quadricyclane (QC) to norbornadiene (NBD), a system that holds the potential to combine both energy storage and conversion in a single molecule. Unambiguous voltammetric traces are obtained for pure NBD and pure QC, the latter a strained polycyclic isomer of the former. The difference in redox potentials is smaller than the energy difference between the neutral molecules. This is owing to a significant energy difference between the corresponding radical cations, as demonstrated by density functional theory (DFT) calculations. The vibrational modes of each pure compound are characterized experimentally in the fingerprint region and identified by DFT methods. Thermal and electrochemical transformations of NBD and QC are monitored in situ by IR spectroelectrochemical methods. The kinetics of the cycloreversion of QC to NBD, which is catalyzed by oxidizing equivalents, can be controlled by an applied electrode potential, which implies the ability to adjust in real time the release of thermal power stored in QC.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Norbornanos/química , Temperatura , Eletroquímica , Cinética , Modelos Moleculares , Conformação Molecular , Teoria Quântica
19.
J Med Chem ; 57(14): 5935-48, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24937104

RESUMO

GPR103, a G-protein coupled receptor, has been reported to have orexigenic properties through activation by the endogenous neuropeptide ligands QRFP26 and QRFP43. Recognizing that central administration of QRFP26 and QRFP43 increases high fat food intake in rats, we decided to investigate if antagonists of GPR103 could play a role in managing feeding behaviors. Here we present the development of a new series of pyrrolo[2,3-c]pyridines as GPR103 small molecule antagonists with GPR103 affinity, drug metabolism and pharmacokinetics and safety parameters suitable for drug development. In a preclinical obesity model measuring food intake, the anorexigenic effect of a pyrrolo[2,3-c]pyridine GPR103 antagonist was demonstrated. In addition, the dynamic 3D solution structure of the C-terminal heptapeptide of the endogenous agonist QRFP26(20-26) was determined using NMR. The synthetic pyrrolo[2,3-c]pyridine antagonists were compared to this experimental structure, which displayed a possible overlay of pharmacophore features supportive for further design of GPR103 antagonists.


Assuntos
Arginina/química , Desenho de Fármacos , Oligopeptídeos/farmacologia , Fenilalanina/química , Piridinas/farmacologia , Pirróis/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Motivos de Aminoácidos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/química , Piridinas/síntese química , Piridinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
20.
J Chem Phys ; 140(20): 204711, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24880315

RESUMO

The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H12-NEC), dodecahydro-N-propylcarbazole (H12-NPC), and dodecahydro-N-butylcarbazole (H12-NBC), on Pt(111) and on Al2O3-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C-N bond of the alkyl chain starting at 380-390 K. On Pt/Al2O3, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA