Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1690: 463792, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36681006

RESUMO

Lantipeptides from bacterial sources are increasingly important as biopharmaceuticals because of their broad range of applications. However, the availability of most lantipeptides is low, and systematic approaches for downstream processing of this group of peptides is still lacking. Model-based development for chromatographic separations has proven to be a useful tool for developing reliable purification processes. One important compound of such a model is the adsorption behavior of the components of interest. In ion-exchange chromatography, the adsorption equilibrium between salt and proteins can be described using the steric mass action (SMA) formalism. Beyond, the model parameters may be related to the lanthipeptides physico-chemical properties. In this study, the antiviral lantipeptides labyrinthopeptin A1 and A2, purified from Actinomadura namibiensis culture broth, were characterized for their adsorption behavior in anion-exchange chromatography in the range from pH 5.0-7.4. The experiments necessary to determine the three SMA parameters were chosen in a way to limit the amount of peptides needed. Linear gradient elution was applied successfully to separate A1 and A2 and to determine the characteristic charge νi and the equilibrium constant [Formula: see text] . Batch adsorption experiments using a robotic workstation for high throughput and accuracy provided non-linear adsorption isotherms and the steric factor σi. Labyrinthopeptin A1 and A2 show a very different adsorption behavior even though the fundamental structure of the two peptides is similar. keq of A1 ranging from 0.18 to 0.88 are approximately one order of magnitude smaller than that of A2 ranging from 3.44 to 9.73 indicating the higher affinity of A2 to the stationary phase. At pH 7.0 σ was 1.12 and 0.60 for A1 and A2, respectively which was expected based on the molecular weight of the peptides. The characteristic charge for both peptides was also theoretically estimated from the amino acids involved in electrostatic interactions which was in good agreement with experimental data. Thereby, this work provides an useful approach to estimate SMA parameters based on simple structural information that can be applied early in chromatographic ion-exchange process development for peptides and may help adapting the processes for future designed lanthipeptides.


Assuntos
Peptídeos , Proteínas , Adsorção , Proteínas/química , Cromatografia por Troca Iônica/métodos , Ânions
2.
Antiviral Res ; 195: 105166, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419483

RESUMO

Acyclovir (ACV) and penciclovir and their prodrugs are recommended for therapy or prophylaxis of Herpes simplex virus 1 (HSV-1) infections. Their administration, however, can lead to the emergence of resistant strains with altered viral thymidine kinase (TK) function, especially in immunocompromised patients. Furthermore, amino acid (aa) changes of the viral deoxyribonucleic acid polymerase (POL) may contribute to resistance to the aforementioned nucleoside analogues. Given this, treatment with foscarnet (FOS) or cidofovir (CDV) may represent an important alternative. Both drugs directly affect POL activity. Several aa changes of POL, such as L49I, E70K, L359I, E421V, P829S, T1121M, and M1226I, have been observed in ACV-resistant clinical strains which also carried relevant aa changes in their TK. Their contribution to ACV, FOS, and CDV resistance is not fully understood. In this study, these seven aa changes with unknown significance for ACV, FOS and CDV resistance were introduced separately into the POL of a recombinant HSV-1 strain rHSV-1(17+)Lox, equipped with or without information for expression of green fluorescent protein (GFP). The GFP-expressing variants were tested for susceptibility to ACV, FOS and CDV. An rHSV-1(17+)Lox GFP strain with the S724N change conferring resistance to ACV and FOS was generated and included as a control. Only the S724N change was confirmed to induce ACV and FOS resistance, whereas the other changes did not contribute to resistance. The underlying nucleotide substitutions of the POL gene should be therefore considered as natural polymorphism. These data will improve sequence-based prediction of antiviral susceptibility.


Assuntos
Antivirais/farmacologia , DNA Polimerase Dirigida por DNA/efeitos dos fármacos , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Aciclovir/farmacologia , Animais , Chlorocebus aethiops , Cidofovir/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Foscarnet/farmacologia , Guanina/farmacologia , Humanos , Hospedeiro Imunocomprometido , Testes de Sensibilidade Microbiana , Timidina Quinase/efeitos dos fármacos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA