Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 8: 1127-1134, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685113

RESUMO

We performed a study on the fundamental adsorption characteristics of Er3N@C80 deposited on W(110) and Au(111) via room temperature scanning tunneling microscopy and spectroscopy. Adsorbed on W(110), a comparatively strong bond to the endohedral fullerenes inhibited the formation of ordered monolayer islands. In contrast, the Au(111)-surface provides a sufficiently high mobility for the molecules to arrange in monolayer islands after annealing. Interestingly, the fullerenes modify the herringbone reconstruction indicating that the molecule-substrate interaction is of considerable extent. Investigations concerning the electronic structure of Er3N@C80/Au(111) reveals spatial variations dependent on the termination of the Au(111) at the interface.

2.
Langmuir ; 32(18): 4464-71, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27093097

RESUMO

Molecular anchoring and electronic properties of macrocyclic complexes fixed on gold surfaces have been investigated mainly by using scanning tunnelling microscopy (STM) and complemented with X-ray photoelectron spectroscopy (XPS). Exchange-coupled macrocyclic complexes [Ni2L(Hmba)](+) were deposited via 4-mercaptobenzoate ligands on the surface of a Au(111) single crystal from a mM solution of the perchlorate salt [Ni2L(Hmba)]ClO4 in dichloromethane. The combined results from STM and XPS show the formation of large monolayers anchored via Au-S bonds with a height of about 1.5 nm. Two apparent granular structures are visible: one related to the dinickel molecular complexes (cationic structures) and a second one related to the counterions ClO4(-) which stabilize the monolayer. No type of short and long-range order is observed. STM tip-interaction with the monolayer reveals higher degradation after 8 h of measurement. Spectroscopy measurements suggest a gap of about 2.5 eV between HOMO and LUMO of the cationic structures and smaller gap in the areas related to the anionic structures.

3.
Phys Rev Lett ; 110(1): 017006, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383831

RESUMO

Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

4.
ACS Nano ; 6(12): 10590-7, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23157662

RESUMO

We report high-resolution scanning tunneling microscopy and spectroscopy of hydrogenated, quasi-free-standing graphene. For this material, theory has predicted the appearance of a midgap state at the Fermi level, and first angle-resolved photoemission spectroscopy (ARPES) studies have provided evidence for the existence of this state in the long-range electronic structure. However, the spatial extension of H defects, their preferential adsorption patterns on graphene, or local electronic structure are experimentally still largely unexplored. Here, we investigate the shapes and local electronic structure of H impurities that go with the aforementioned midgap state observed in ARPES. Our measurements of the local density of states at hydrogenated patches of graphene reveal a hydrogen impurity state near the Fermi level whose shape depends on the tip position with respect to the center of a patch. In the low H concentration regime, we further observe predominantly single hydrogenation sites as well as extended multiple C-H sites in parallel orientation to the lattice vectors, indicating an adsorption at the same graphene sublattice. This is corroborated by ARPES measurements showing the formation of a dispersionless hydrogen impurity state which is extended over the whole Brillouin zone.

5.
Phys Rev Lett ; 108(12): 127001, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540616

RESUMO

A crucial step in revealing the nature of unconventional superconductivity is to investigate the symmetry of the superconducting order parameter. Scanning tunneling spectroscopy has proven a powerful technique to probe this symmetry by measuring the quasiparticle interference (QPI) which sensitively depends on the superconducting pairing mechanism. A particularly well-suited material to apply this technique is the stoichiometric superconductor LiFeAs as it features clean, charge neutral cleaved surfaces without surface states and a relatively high T(c)∼18 K. Our data reveal that in LiFeAs the quasiparticle scattering is governed by a van Hove singularity at the center of the Brillouin zone which is in stark contrast to other pnictide superconductors where nesting is crucial for both scattering and s(±) superconductivity. Indeed, within a minimal model and using the most elementary order parameters, calculations of the QPI suggest a dominating role of the holelike bands for the quasiparticle scattering. Our theoretical findings do not support the elementary singlet pairing symmetries s(++), s(±), and d wave. This brings to mind that the superconducting pairing mechanism in LiFeAs is based on an unusual pairing symmetry such as an elementary p wave (which provides optimal agreement between the experimental data and QPI simulations) or a more complex order parameter (e.g., s+id wave symmetry).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA