Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(8): e0180732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797084

RESUMO

In soybean, variegated flowers can be caused by somatic excision of the CACTA-type transposable element Tgm9 from Intron 2 of the DFR2 gene encoding dihydroflavonol-4-reductase of the anthocyanin pigment biosynthetic pathway. DFR2 was mapped to the W4 locus, where the allele containing Tgm9 was termed w4-m. In this study we have demonstrated that previously identified morphological mutants (three chlorophyll deficient mutants, one male sterile-female fertile mutant, and three partial female sterile mutants) were caused by insertion of Tgm9 following its excision from DFR2. Analyses of Tgm9 insertion sites among 105 independent mutants demonstrated that Tgm9 hops to all 20 soybean chromosomes from its original location on Chromosome 17. Some genomic regions are prone to increased Tgm9-insertions. Tgm9 transposed over 25% of the time into exon or intron sequences. Tgm9 is therefore suitable for generating an indexed insertional mutant collection for functional analyses of most soybean genes. Furthermore, desirable Tgm9-induced stable knockout mutants can be utilized in generating improved traits for commercial soybean cultivars.


Assuntos
Oxirredutases do Álcool/genética , Elementos de DNA Transponíveis , Genes de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Alelos , Cromossomos de Plantas/genética , Técnicas de Inativação de Genes , Mutação , Plantas Geneticamente Modificadas/genética
2.
PLoS One ; 10(5): e0127544, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020768

RESUMO

Brassinosteroids (BRs) are plant hormones, fundamental for the growth and development of plants. A trans-membrane protein receptor kinase, Brassinosteroid-Insensitive 1 (BRI1), is known to interact with BRs and be directly involved in plant development. This study investigates the structural organization of BRI1 orthologs in several taxa, with a specific interest in Triticum aestivum. True orthologs of Arabidopsis thaliana BRI1 (AtBRI1) from seven-plant species showed sequence identity ranging from 54% to 95% at the protein level. All gene sequences lacked introns, leading to speculation that post-transcriptional processing in TaBRI1 is similar to AtBRI1. Based on in silico analysis, a single copy of BRI1 was present in each of the three wheat genomes on the long arm of chromosome 3. Domain structure of BRI1 orthologs among different taxa showed multiple leucine rich repeats (LRRs), an island domain (ID), a juxtamembrane/transmembrane domain (JTMD), a catalytic kinase domain (KD), C and N-Terminal domains. The KD showed the highest level of conservation while the LRRs and JTMD were most variable. Phosphorylation of residues in the juxtamembrane domain, known to be involved in the activation of the KD, is conserved in TaBRI1. While TaBRI1 has well-defined differences in the ID and LRR domains, many residues involved in ligand binding are conserved. The activation loop present in the KD showed 100% conservation in all taxa. Despite residue differences, hydrophobicity was conserved in the BR binding pocket across taxa, suggesting that function may not differ as drastically as residue identity may suggest. Predicted 3D structure of AtBRI1 and TaBRI1 showed a conserved super helical assembly, a feature essential in protein-protein interactions. An unrooted phylogram showed TaBRI1 in the monocot clade to be distinct from that of dicots. New insight in the structure and functions of BRI1 may help in targeting BR pathway for crop improvement.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta/fisiologia , Proteínas Quinases/genética , Triticum/genética , Arabidopsis/enzimologia , Cromossomos de Plantas/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Triticum/enzimologia
3.
Genome ; 57(3): 155-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24814801

RESUMO

In soybean, an environmentally stable male sterility system is vital for making hybrid seed production commercially viable. Eleven male-sterile, female-fertile mutants (ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, msMOS, and msp) have been identified in soybean. Of these, eight (ms2, ms3, ms5, ms7, ms8, ms9, msMOS, and msp) have been mapped to soybean chromosomes. The objectives of this study were to (i) locate the ms1, ms4, and ms6 genes to soybean chromosomes; (ii) generate genetic linkage maps of the regions containing these genes; and (iii) develop a comprehensive map of all known male-sterile, female-fertile genes in soybean. The bulked segregant analysis technique was used to locate genes to soybean chromosomes. Microsatellite markers from the corresponding chromosomes were used on F2 populations to generate genetic linkage maps. The ms1 and ms6 genes were located on chromosome 13 (molecular linkage group F) and ms4 was present on chromosome 2 (molecular linkage group D1b). Molecular analyses revealed markers Satt516, BARCSOYSSR_02_1539, and AW186493 were located closest to ms1, ms4, and ms6, respectively. The ms1 and ms6 genes, although present on the same chromosome, were independently assorting with a genetic distance of 73.7 cM. Using information from this study and compiled information from previously published male sterility genes in soybean, a comprehensive genetic linkage map was generated. Eleven male sterility genes were present on seven soybean chromosomes. Four genes were present in two regions on chromosome 2 (molecular linkage group D1b) and two genes were present on chromosome 13 (molecular linkage group F).


Assuntos
Genes de Plantas , Ligação Genética , Glycine max/genética , Repetições de Microssatélites , Mutação , Infertilidade das Plantas/genética , Polinização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA