Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Allergy Clin Immunol Glob ; 2(2): 100091, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37038555

RESUMO

Background: Immunodeficient patients (IDPs) are at higher risk of contracting severe coronavirus disease 2019 (COVID-19). Targeted vaccination strategies have been implemented to enhance vaccine-induced protection. In this population, however, clinical effectiveness is variable and the duration of protection unknown. Objective: We sought to better understand the cellular and humoral immune responses to mRNA and adenoviral vectored COVID-19 vaccines in patients with immunodeficiency. Methods: Immune responses to severe acute respiratory syndrome coronavirus 2 spike were assessed after 2 doses of homologous ChAdOx1-nCoV-19 or BNT162b2 vaccines in 112 infection-naive IDPs and 131 healthy health care workers as controls. Predictors of vaccine responsiveness were investigated. Results: Immune responses to vaccination were low, and virus neutralization by antibody was not detected despite high titer binding responses in many IDPs. In those exhibiting response, the frequency of specific T-cell responses in IDPs was similar to controls, while antibody responses were lower. Sustained vaccine specific differences were identified: T-cell responses were greater in ChAdOx1-nCoV-19- compared to BNT162b2-immunized IDPs, and antibody binding and neutralization were greater in all cohorts immunized with BNT162b2. The positive correlation between T-cell and antibody responses was weak and increased with subsequent vaccination. Conclusion: Immunodeficient patients have impaired immune responses to mRNA and viral vector COVID-19 vaccines that appear to be influenced by vaccine formulation. Understanding the relative roles of T-cell- and antibody-mediated protection as well as the potential of heterologous prime and boost immunization protocols is needed to optimize the vaccination approach in these high-risk groups.

2.
J Allergy Clin Immunol ; 152(2): 528-537, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36587851

RESUMO

BACKGROUND: Granulomatous and lymphocytic interstitial lung disease (gl-ILD) is a major cause of morbidity and mortality among patients with common variable immunodeficiency. Corticosteroids are recommended as first-line treatment for gl-ILD, but evidence for their efficacy is lacking. OBJECTIVES: This study analyzed the effect of high-dose corticosteroids (≥0.3 mg/kg prednisone equivalent) on gl-ILD, measured by high-resolution computed tomography (HRCT) scans, and pulmonary function test (PFT) results. METHODS: Patients who had received high-dose corticosteroids but no other immunosuppressive therapy at the time (n = 56) and who underwent repeated HRCT scanning or PFT (n = 39) during the retrospective and/or prospective phase of the Study of Interstitial Lung Disease in Primary Antibody Deficiency (STILPAD) were included in the analysis. Patients without any immunosuppressive treatment were selected as controls (n = 23). HRCT scans were blinded, randomized, and scored using the Hartman score. Differences between the baseline and follow-up HRCT scans and PFT were analyzed. RESULTS: Treatment with high-dose corticosteroids significantly improved HRCT scores and forced vital capacity. Carbon monoxide diffusion capacity significantly improved in both groups. Of 18 patients, for whom extended follow-up data was available, 13 achieved a long-term, maintenance therapy independent remission. All patients with relapse were retreated with corticosteroids, but only one-fifth of them responded. Two opportunistic infections were found in the corticosteroid treatment group, while overall infection rate was similar between cohorts. CONCLUSIONS: Induction therapy with high-dose corticosteroids improved HRCT scans and PFT results of patients with gl-ILD and achieved long-term remission in 42% of patients. It was not associated with major side effects. Low-dose maintenance therapy provided no benefit and efficacy was poor in relapsing disease.


Assuntos
Doenças Pulmonares Intersticiais , Humanos , Corticosteroides/uso terapêutico , Imunossupressores/uso terapêutico , Pulmão/diagnóstico por imagem , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/etiologia , Estudos Prospectivos , Estudos Retrospectivos
4.
Front Immunol ; 13: 860316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967315

RESUMO

Current antiretroviral therapy (ART) guidelines recommend treating all children with HIV-1 infection. This has changed from the broader use of ART to treat children to improve morbidity and minimise mortality. However, prior to current recommendations, not everyone with HIV-1 received timely treatment. What happens to the paediatric immune system when HIV-1 replication is not appropriately supressed remains unclear. 11 samples from adolescents with HIV-1 on ART and uninfected controls in the UK, aged 12-25 years, were examined; overall, adolescents with CD4+ counts > 500/µl and a viral load < 50 copies/ml were compared with adolescents with CD4+ counts < 500/µl and a viral load > 50 copies/ml at time of sampling. Measurements of thymic output were combined with high throughput next generation sequencing and bioinformatics to systematically organize CD4+ and CD8+ T cell receptor (TCR) repertoires. TCR repertoire diversity, clonal expansions, TCR sequence sharing, and formation of TCR clusters in HIV-1 infected adolescents with successful HIV-1 suppression were compared to adolescents with ineffective HIV-1 suppression. Thymic output and CD4+ T cell numbers were decreased in HIV-1 infected adolescents with poor HIV-1 suppression. A strong homeostatic TCR response, driven by the decreased CD4+ T cell compartment and reduced thymic output was observed in the virally uncontrolled HIV-1-infected adolescents. Formation of abundant robust TCR clusters and structurally related TCRs were found in the adolescents with effective HIV-1 suppression. Numerous CD4+ T cell numbers in the virally controlled adolescents emphasize the importance of high thymic output and formation of robust TCR clusters in the maintenance of HIV-1 suppression. While the profound capacity for immune recovery in children may allow better opportunity to deal with immunological stress, when ART is taken appropriately, this study demonstrates new insights into the unique paediatric immune system and the immunological changes when HIV-1 replication is ongoing.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Adolescente , Adulto , Antirretrovirais/uso terapêutico , Criança , Soropositividade para HIV/tratamento farmacológico , Humanos , Imunidade , Receptores de Antígenos de Linfócitos T , Adulto Jovem
5.
Sci Immunol ; 7(74): eabn3800, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960817

RESUMO

Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a central regulator of immunity. TRAF3 is often somatically mutated in B cell malignancies, but its role in human immunity is not defined. Here, in five unrelated families, we describe an immune dysregulation syndrome of recurrent bacterial infections, autoimmunity, systemic inflammation, B cell lymphoproliferation, and hypergammaglobulinemia. Affected individuals each had monoallelic mutations in TRAF3 that reduced TRAF3 expression. Immunophenotyping showed that patients' B cells were dysregulated, exhibiting increased nuclear factor-κB 2 activation, elevated mitochondrial respiration, and heightened inflammatory responses. Patients had mild CD4+ T cell lymphopenia, with a reduced proportion of naïve T cells but increased regulatory T cells and circulating T follicular helper cells. Guided by this clinical phenotype, targeted analyses demonstrated that common genetic variants, which also reduce TRAF3 expression, are associated with an increased risk of B cell malignancies, systemic lupus erythematosus, higher immunoglobulin levels, and bacterial infections in the wider population. Reduced TRAF3 conveys disease risks by driving B cell hyperactivity via intrinsic activation of multiple intracellular proinflammatory pathways and increased mitochondrial respiration, with a likely contribution from dysregulated T cell help. Thus, we define monogenic TRAF3 haploinsufficiency syndrome and demonstrate how common TRAF3 variants affect a range of human diseases.


Assuntos
Neoplasias , Fator 3 Associado a Receptor de TNF , Autoimunidade/genética , Linfócitos B , Humanos , Mutação , Neoplasias/patologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo
6.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682724

RESUMO

The involvement of immunoglobulin (Ig) G3 in the humoral immune response to SARS-CoV-2 infection has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) in COVID-19. The exact molecular mechanism is unknown, but it is thought to involve this IgG subtype's differential ability to fix, complement and stimulate cytokine release. We examined the binding of convalescent patient antibodies to immobilized nucleocapsids and spike proteins by matrix-assisted laser desorption/ionization-time of flight (MALDI-ToF) mass spectrometry. IgG3 was a major immunoglobulin found in all samples. Differential analysis of the spectral signatures found for the nucleocapsid versus the spike protein demonstrated that the predominant humoral immune response to the nucleocapsid was IgG3, whilst for the spike protein it was IgG1. However, the spike protein displayed a strong affinity for IgG3 itself, as it would bind from control plasma samples, as well as from those previously infected with SARS-CoV-2, similar to the way protein G binds IgG1. Furthermore, detailed spectral analysis indicated that a mass shift consistent with hyper-glycosylation or glycation was a characteristic of the IgG3 captured by the spike protein.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Humanos , Imunoglobulina G , Nucleocapsídeo , SARS-CoV-2
7.
J Med Virol ; 94(10): 4820-4829, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35705514

RESUMO

The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.


Assuntos
COVID-19 , Coronavirus Humano NL63 , Anticorpos Antivirais , Reações Cruzadas , Humanos , Pandemias , SARS-CoV-2 , Estações do Ano , Glicoproteína da Espícula de Coronavírus
8.
Front Immunol ; 13: 841759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572551

RESUMO

A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection were observed in patients with severe COVID-19. The cause of this predisposition to infection is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised that secondary hypocomplementaemia is rendering the antibody-dependent classical pathway activation inactive and compromises serum bactericidal activity (SBA). 217 patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial infections. Klebsiella species were the most common Gram-negative organism, found in 58 patients, while S. aureus was the dominant Gram-positive organism found in 22 patients. Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in convalescent survivors three months after discharge. Sera from patients with acute COVID-19 were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute COVID-19 leads to secondary hypocomplementaemia and predisposes to opportunistic infections.


Assuntos
COVID-19 , Infecções Estafilocócicas , Proteínas do Sistema Complemento , Doenças da Deficiência Hereditária de Complemento , Humanos , Klebsiella pneumoniae , Staphylococcus aureus
9.
Clin Exp Immunol ; 209(3): 247-258, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35641155

RESUMO

In March 2020, the United Kingdom Primary Immunodeficiency Network (UKPIN) established a registry of cases to collate the outcomes of individuals with PID and SID following SARS-CoV-2 infection and treatment. A total of 310 cases of SARS-CoV-2 infection in individuals with PID or SID have now been reported in the UK. The overall mortality within the cohort was 17.7% (n = 55/310). Individuals with CVID demonstrated an infection fatality rate (IFR) of 18.3% (n = 17/93), individuals with PID receiving IgRT had an IFR of 16.3% (n = 26/159) and individuals with SID, an IFR of 27.2% (n = 25/92). Individuals with PID and SID had higher inpatient mortality and died at a younger age than the general population. Increasing age, low pre-SARS-CoV-2 infection lymphocyte count and the presence of common co-morbidities increased the risk of mortality in PID. Access to specific COVID-19 treatments in this cohort was limited: only 22.9% (n = 33/144) of patients admitted to the hospital received dexamethasone, remdesivir, an anti-SARS-CoV-2 antibody-based therapeutic (e.g. REGN-COV2 or convalescent plasma) or tocilizumab as a monotherapy or in combination. Dexamethasone, remdesivir, and anti-SARS-CoV-2 antibody-based therapeutics appeared efficacious in PID and SID. Compared to the general population, individuals with PID or SID are at high risk of mortality following SARS-CoV-2 infection. Increasing age, low baseline lymphocyte count, and the presence of co-morbidities are additional risk factors for poor outcome in this cohort.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Síndromes de Imunodeficiência , Humanos , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Soroterapia para COVID-19 , Dexametasona , Combinação de Medicamentos , Imunização Passiva , SARS-CoV-2 , Reino Unido/epidemiologia
10.
Commun Biol ; 5(1): 409, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505237

RESUMO

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Assuntos
COVID-19 , Quirópteros , Animais , COVID-19/terapia , Quirópteros/metabolismo , Humanos , Imunização Passiva , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Soroterapia para COVID-19
11.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456942

RESUMO

The immune response to SARS-CoV-2 infection requires antibody recognition of the spike protein. In a study designed to examine the molecular features of anti-spike and anti-nucleocapsid antibodies, patient plasma proteins binding to pre-fusion stabilised complete spike and nucleocapsid proteins were isolated and analysed by matrix-assisted laser desorption ionisation-time of flight (MALDI-ToF) mass spectrometry. Amongst the immunoglobulins, a high affinity for human serum albumin was evident in the anti-spike preparations. Careful mass comparison revealed the preferential capture of advanced glycation end product (AGE) forms of glycated human serum albumin by the pre-fusion spike protein. The ability of bacteria and viruses to surround themselves with serum proteins is a recognised immune evasion and pathogenic process. The preference of SARS-CoV-2 for AGE forms of glycated serum albumin may in part explain the severity and pathology of acute respiratory distress and the bias towards the elderly and those with (pre)diabetic and atherosclerotic/metabolic disease.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Idoso , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Albumina Sérica , Albumina Sérica Humana , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Am J Respir Crit Care Med ; 206(1): 81-93, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35316153

RESUMO

Rationale: Autoimmunity is believed to play a role in idiopathic pulmonary arterial hypertension (IPAH). It is not clear whether this is causative or a bystander of disease and if it carries any prognostic or treatment significance. Objectives: To study autoimmunity in IPAH using a large cross-sectional cohort. Methods: Assessment of the circulating immune cell phenotype was undertaken using flow cytometry, and the profile of serum immunoglobulins was generated using a standardized multiplex array of 19 clinically validated autoantibodies in 473 cases and 946 control subjects. Additional glutathione S-transferase fusion array and ELISA data were used to identify a serum autoantibody to BMPR2 (bone morphogenetic protein receptor type 2). Clustering analyses and clinical correlations were used to determine associations between immunogenicity and clinical outcomes. Measurements and Main Results: Flow cytometric immune profiling demonstrates that IPAH is associated with an altered humoral immune response in addition to raised IgG3. Multiplexed autoantibodies were significantly raised in IPAH, and clustering demonstrated three distinct clusters: "high autoantibody," "low autoantibody," and a small "intermediate" cluster exhibiting high concentrations of ribonucleic protein complex. The high-autoantibody cluster had worse hemodynamics but improved survival. A small subset of patients demonstrated immunoglobulin reactivity to BMPR2. Conclusions: This study establishes aberrant immune regulation and presence of autoantibodies as key features in the profile of a significant proportion of patients with IPAH and is associated with clinical outcomes.


Assuntos
Autoimunidade , Hipertensão Pulmonar , Autoanticorpos , Estudos Transversais , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/genética
13.
Front Immunol ; 13: 773982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330908

RESUMO

The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2/genética , Índice de Gravidade de Doença , Soroterapia para COVID-19
14.
J Allergy Clin Immunol ; 149(2): 557-561.e1, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34780850

RESUMO

BACKGROUND: Patients with some types of immunodeficiency can experience chronic or relapsing infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This leads to morbidity and mortality, infection control challenges, and the risk of evolution of novel viral variants. The optimal treatment for chronic coronavirus disease 2019 (COVID-19) is unknown. OBJECTIVE: Our aim was to characterize a cohort of patients with chronic or relapsing COVID-19 disease and record treatment response. METHODS: We conducted a UK physician survey to collect data on underlying diagnosis and demographics, clinical features, and treatment response of immunodeficient patients with chronic (lasting ≥21 days) or relapsing (≥2 episodes) of COVID-19. RESULTS: We identified 31 patients (median age 49 years). Their underlying immunodeficiency was most commonly characterized by antibody deficiency with absent or profoundly reduced peripheral B-cell levels; prior anti-CD20 therapy, and X-linked agammaglobulinemia. Their clinical features of COVID-19 were similar to those of the general population, but their median duration of symptomatic disease was 64 days (maximum 300 days) and individual patients experienced up to 5 episodes of illness. Remdesivir monotherapy (including when given for prolonged courses of ≤20 days) was associated with sustained viral clearance in 7 of 23 clinical episodes (30.4%), whereas the combination of remdesivir with convalescent plasma or anti-SARS-CoV-2 mAbs resulted in viral clearance in 13 of 14 episodes (92.8%). Patients receiving no therapy did not clear SARS-CoV-2. CONCLUSIONS: COVID-19 can present as a chronic or relapsing disease in patients with antibody deficiency. Remdesivir monotherapy is frequently associated with treatment failure, but the combination of remdesivir with antibody-based therapeutics holds promise.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Anticorpos Monoclonais/uso terapêutico , Antivirais/uso terapêutico , COVID-19/terapia , Síndromes de Imunodeficiência/terapia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina/uso terapêutico , Linfócitos B/imunologia , Linfócitos B/patologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Doença Crônica , Feminino , Humanos , Imunização Passiva , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Síndromes de Imunodeficiência/virologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/administração & dosagem , Recidiva , SARS-CoV-2/patogenicidade , Falha de Tratamento , Soroterapia para COVID-19
15.
Front Immunol ; 12: 748291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867975

RESUMO

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study is to identify biomarkers of humoral immunity that could be used to differentiate severe from mild or asymptomatic SARS-CoV-2 infections. Some of these biomarkers could be used to define CoP in further serological studies using samples from vaccination breakthrough and/or re-infection cases. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (IU) for virus neutralisation assays or in Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG/IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and an electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD/S antibodies. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.


Assuntos
COVID-19/imunologia , Convalescença , Imunidade Humoral , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/diagnóstico , Teste Sorológico para COVID-19/normas , Calibragem , Humanos , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Padrões de Referência , Índice de Gravidade de Doença
16.
J Crit Care Med (Targu Mures) ; 7(3): 199-210, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34722923

RESUMO

INTRODUCTION: In early 2020, at first surge of the coronavirus disease 2019 (COVID-19) pandemic, many health care workers (HCW) were re-deployed to critical care environments to support intensive care teams looking after patients with severe COVID-19. There was considerable anxiety of increased risk of COVID-19 for these staff. To determine whether critical care HCW were at increased risk of hospital acquired infection, we explored the relationship between workplace, patient facing role and evidence of immune exposure to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a quaternary hospital providing a regional critical care response. Routine viral surveillance was not available at this time. METHODS: We screened over 500 HCW (25% of the total workforce) for history of clinical symptoms of possible COVID19, assigning a symptom severity score, and quantified SARS-CoV-2 serum antibodies as evidence of immune exposure to the virus. RESULTS: Whilst 45% of the cohort reported symptoms that they consider may have represented COVID-19, 14% had evidence of immune exposure. Staffs in patient facing critical care roles were least likely to be seropositive (9%) and staff working in non-patient facing roles most likely to be seropositive (22%). Anosmia and fever were the most discriminating symptoms for seropositive status. Older males presented with more severe symptoms. Of the 12 staff screened positive by nasal swab (10 symptomatic), 3 showed no evidence of seroconversion in convalescence. CONCLUSIONS: Patient facing staff working in critical care do not appear to be at increased risk of hospital acquired infection however the risk of nosocomial infection from non-patient facing staff may be more significant than previous recognised. Most symptoms ascribed to possible COVID-19 were found to have no evidence of immune exposure however seroprevalence may underrepresent infection frequency. Older male staff were at the greatest risk of more severe symptoms.

17.
Viruses ; 13(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452443

RESUMO

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , Coronavirus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Amplamente Neutralizantes/sangue , Linhagem Celular , Coronavirus Humano 229E/imunologia , Coronavirus Humano 229E/fisiologia , Coronavirus Humano NL63/imunologia , Coronavirus Humano NL63/fisiologia , Coronavirus Humano OC43/imunologia , Coronavirus Humano OC43/fisiologia , Reações Cruzadas , Humanos , Lentivirus/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Testes de Neutralização , Plasmídeos , SARS-CoV-2/fisiologia , Transfecção , Internalização do Vírus
20.
EMBO J ; 40(17): e108588, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323299

RESUMO

The humoral immune response to SARS-CoV-2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N-antibody activity. Here, we present a simple in vitro method called EDNA (electroporated-antibody-dependent neutralization assay) that provides a quantitative measure of N-antibody activity in unpurified serum from SARS-CoV-2 convalescents. We show that N antibodies neutralize SARS-CoV-2 intracellularly and cell-autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N-antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N-antibody and N-specific T-cell activity correlates within individuals, suggesting N antibodies may protect against SARS-CoV-2 by promoting antigen presentation. This work highlights the potential benefits of N-based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19/sangue , SARS-CoV-2/isolamento & purificação , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/virologia , Humanos , Nucleoproteínas/sangue , Nucleoproteínas/imunologia , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA