Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266578

RESUMO

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.


Assuntos
Neoplasias Cerebelares , Rabdomiossarcoma Embrionário , Animais , Carcinogênese , Mutação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Cells ; 12(9)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37174684

RESUMO

Eukaryotic cells maintain cellular fitness by employing well-coordinated and evolutionarily conserved processes that negotiate stress induced by internal or external environments. These processes include the unfolded protein response, autophagy, endoplasmic reticulum-associated degradation (ERAD) of unfolded proteins and altered mitochondrial functions that together constitute the ER stress response. Here, we show that the RNA demethylase ALKBH5 regulates the crosstalk among these processes to maintain normal ER function. We demonstrate that ALKBH5 regulates ER homeostasis by controlling the expression of ER lipid raft associated 1 (ERLIN1), which binds to the activated inositol 1, 4, 5,-triphosphate receptor and facilitates its degradation via ERAD to maintain the calcium flux between the ER and mitochondria. Using functional studies and electron microscopy, we show that ALKBH5-ERLIN-IP3R-dependent calcium signaling modulates the activity of AMP kinase, and consequently, mitochondrial biogenesis. Thus, these findings reveal that ALKBH5 serves an important role in maintaining ER homeostasis and cellular fitness.


Assuntos
Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Homeostase
3.
Mol Cancer Ther ; 21(1): 170-183, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34737198

RESUMO

Oncogenic RAS signaling is an attractive target for fusion-negative rhabdomyosarcoma (FN-RMS). Our study validates the role of the ERK MAPK effector pathway in mediating RAS dependency in a panel of H/NRASQ61X mutant RMS cells and correlates in vivo efficacy of the MEK inhibitor trametinib with pharmacodynamics of ERK activity. A screen is used to identify trametinib-sensitizing targets, and combinations are evaluated in cells and tumor xenografts. We find that the ERK MAPK pathway is central to H/NRASQ61X dependency in RMS cells; however, there is poor in vivo response to clinically relevant exposures with trametinib, which correlates with inefficient suppression of ERK activity. CRISPR screening points to vertical inhibition of the RAF-MEK-ERK cascade by cosuppression of MEK and either CRAF or ERK. CRAF is central to rebound pathway activation following MEK or ERK inhibition. Concurrent CRAF suppression and MEK or ERK inhibition, or concurrent pan-RAF and MEK/ERK inhibition (pan-RAFi + MEKi/ERKi), or concurrent MEK and ERK inhibition (MEKi + ERKi) all synergistically block ERK activity and induce myogenic differentiation and apoptosis. In vivo assessment of pan-RAFi + ERKi or MEKi + ERKi potently suppress growth of H/NRASQ61X RMS tumor xenografts, with pan-RAFi + ERKi being more effective and better tolerated. We conclude that CRAF reactivation limits the activity of single-agent MEK/ERK inhibitors in FN-RMS. Vertical targeting of the RAF-MEK-ERK cascade and particularly cotargeting of CRAF and MEK or ERK, or the combination of pan-RAF inhibitors with MEK or ERK inhibitors, have synergistic activity and potently suppress H/NRASQ61X mutant RMS tumor growth.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Rabdomiossarcoma/genética , Animais , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Genes ras , Humanos , Camundongos , Rabdomiossarcoma/patologia , Transfecção
4.
Cancer Res ; 81(21): 5451-5463, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462275

RESUMO

Ionizing radiation (IR) and chemotherapy are mainstays of treatment for patients with rhabdomyosarcoma, yet the molecular mechanisms that underlie the success or failure of radiotherapy remain unclear. The transcriptional repressor SNAI2 was previously identified as a key regulator of IR sensitivity in normal and malignant stem cells through its repression of the proapoptotic BH3-only gene PUMA/BBC3. Here, we demonstrate a clear correlation between SNAI2 expression levels and radiosensitivity across multiple rhabdomyosarcoma cell lines. Modulating SNAI2 levels in rhabdomyosarcoma cells through its overexpression or knockdown altered radiosensitivity in vitro and in vivo. SNAI2 expression reliably promoted overall cell growth and inhibited mitochondrial apoptosis following exposure to IR, with either variable or minimal effects on differentiation and senescence, respectively. Importantly, SNAI2 knockdown increased expression of the proapoptotic BH3-only gene BIM, and chromatin immunoprecipitation sequencing experiments established that SNAI2 is a direct repressor of BIM/BCL2L11. Because the p53 pathway is nonfunctional in the rhabdomyosarcoma cells used in this study, we have identified a new, p53-independent SNAI2/BIM signaling axis that could potentially predict clinical responses to IR treatment and be exploited to improve rhabdomyosarcoma therapy. SIGNIFICANCE: SNAI2 is identified as a major regulator of radiation-induced apoptosis in rhabdomyosarcoma through previously unknown mechanisms independent of p53.


Assuntos
Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radiação Ionizante , Rabdomiossarcoma/prevenção & controle , Fatores de Transcrição da Família Snail/metabolismo , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , RNA-Seq , Rabdomiossarcoma/etiologia , Rabdomiossarcoma/patologia , Fatores de Transcrição da Família Snail/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Zebrafish ; 18(4): 293-296, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34030492

RESUMO

Angiosarcoma is a clinically aggressive tumor with a high rate of mortality. It can arise in vascular or lymphatic tissues, involve any part of the body, and aggressively spread locally or metastasize. Angiosarcomas spontaneously develop in the tp53 deleted (tp53del/del) zebrafish mutant. However, established protocols for tumor dissection and transplantation of single cell suspensions of angiosarcoma tumors result in inferior implantation rates. To resolve these complications, we developed a new tumor grafting technique for engraftment of angiosarcoma and similar tumors in zebrafish, which maintains the tumor microenvironment and has superior rates of engraftment.


Assuntos
Hemangiossarcoma , Transplante de Neoplasias , Peixe-Zebra , Animais , Modelos Animais de Doenças , Hemangiossarcoma/patologia , Suspensões , Microambiente Tumoral
6.
Nat Commun ; 12(1): 192, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420019

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Diferenciação Celular , Proteína MyoD/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos SCID , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Miogenina/metabolismo , Proteínas de Fusão Oncogênica/genética , Oncogenes , Rabdomiossarcoma/patologia , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Embrionário/genética , Fatores de Transcrição da Família Snail/genética , Transcriptoma
7.
G3 (Bethesda) ; 10(1): 387-400, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31767636

RESUMO

Akirin, a conserved metazoan protein, functions in muscle development in flies and mice. However, this was only tested in the rodent and fly model systems. Akirin was shown to act with chromatin remodeling complexes in transcription and was established as a downstream target of the NFκB pathway. Here we show a role for Caenorhabditis elegans Akirin/AKIR-1 in the muscle and body length regulation through a different pathway. Akirin localizes to somatic tissues throughout the body of C. elegans, including muscle nuclei. In agreement with its role in other model systems, Akirin loss of function mutants exhibit defects in muscle development in the embryo, as well as defects in movement and maintenance of muscle integrity in the C. elegans adult. We also have determined that Akirin acts downstream of the TGF-ß Sma/Mab signaling pathway in controlling body size. Moreover, we found that the loss of Akirin resulted in an increase in autophagy markers, similar to mutants in the TGF-ß Sma/Mab signaling pathway. In contrast to what is known in rodent and fly models, C. elegans Akirin does not act with the SWI/SNF chromatin-remodeling complex, and is instead involved with the NuRD chromatin remodeling complex in both movement and regulation of body size. Our studies define a novel developmental role (body size) and a new pathway (TGF-ß Sma/Mab) for Akirin function, and confirmed its evolutionarily conserved function in muscle development in a new organism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Autofagia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Mutação com Perda de Função , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Elife ; 72018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30192230

RESUMO

The TP53 tumor-suppressor gene is mutated in >50% of human tumors and Li-Fraumeni patients with germ line inactivation are predisposed to developing cancer. Here, we generated tp53 deleted zebrafish that spontaneously develop malignant peripheral nerve-sheath tumors, angiosarcomas, germ cell tumors, and an aggressive Natural Killer cell-like leukemia for which no animal model has been developed. Because the tp53 deletion was generated in syngeneic zebrafish, engraftment of fluorescent-labeled tumors could be dynamically visualized over time. Importantly, engrafted tumors shared gene expression signatures with predicted cells of origin in human tissue. Finally, we showed that tp53del/del enhanced invasion and metastasis in kRASG12D-induced embryonal rhabdomyosarcoma (ERMS), but did not alter the overall frequency of cancer stem cells, suggesting novel pro-metastatic roles for TP53 loss-of-function in human muscle tumors. In summary, we have developed a Li-Fraumeni zebrafish model that is amenable to large-scale transplantation and direct visualization of tumor growth in live animals.


Assuntos
Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Proteína Supressora de Tumor p53/deficiência , Peixe-Zebra/metabolismo , Animais , Contagem de Células , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Hemangiossarcoma/metabolismo , Hemangiossarcoma/patologia , Homozigoto , Leucemia/metabolismo , Leucemia/patologia , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Rabdomiossarcoma Embrionário/genética , Análise de Sobrevida , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética
9.
J Vis Exp ; (134)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29708551

RESUMO

The nematode Caenorhabditis elegans (C. elegans) is a model system that is widely used to study longevity and developmental pathways. Such studies are facilitated by the transparency of the animal, the ability to do forward and reverse genetic assays, the relative ease of generating fluorescently labeled proteins, and the use of fluorescent dyes that can either be microinjected into the early embryo or incorporated into its food (E. coli strain OP50) to label cellular organelles (e.g. 9-diethylamino-5H-benzo(a)phenoxazine-5-one and (3-{2-[(1H,1'H-2,2'-bipyrrol-5-yl-kappaN(1))methylidene]-2H-pyrrol-5-yl-kappaN}-N-[2-(dimethylamino)ethyl]propanamidato)(difluoro)boron). Here, we present the use of a fluorescent pH-sensitive dye that stains intestinal lysosomes, providing a visual readout of dynamic, physiological changes in lysosomal acidity in live worms. This protocol does not measure lysosomal pH, but rather aims to establish a reliable method of assessing physiological relevant variations in lysosomal acidity. cDCFDA is a cell-permeant compound that is converted to the fluorescent fluorophore 5-(and-6)-carboxy-2',7'-dichlorofluorescein (cDCF) upon hydrolysis by intracellular esterases. Protonation inside lysosomes traps cDCF in these organelles, where it accumulates. Due to its low pKa of 4.8, this dye has been used as a pH sensor in yeast. Here we describe the use of cDCFDA as a food supplement to assess the acidity of intestinal lysosomes in C. elegans. This technique allows for the detection of alkalinizing lysosomes in live animals, and has a broad range of experimental applications including studies on aging, autophagy, and lysosomal biogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Lisossomos/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética
10.
G3 (Bethesda) ; 8(5): 1579-1592, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519938

RESUMO

The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox) transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1) are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2), leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS). Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost.


Assuntos
Álcalis/metabolismo , Núcleo Celular/metabolismo , Senescência Celular , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ácidos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Regulação para Cima/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , alfa-Sinucleína/metabolismo
11.
Genetics ; 207(1): 83-101, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28696216

RESUMO

Aging in eukaryotes is accompanied by widespread deterioration of the somatic tissue. Yet, abolishing germ cells delays the age-dependent somatic decline in Caenorhabditis elegans In adult worms lacking germ cells, the activation of the DAF-9/DAF-12 steroid signaling pathway in the gonad recruits DAF-16 activity in the intestine to promote longevity-associated phenotypes. However, the impact of this pathway on the fitness of normally reproducing animals is less clear. Here, we explore the link between progeny production and somatic aging and identify the loss of lysosomal acidity-a critical regulator of the proteolytic output of these organelles-as a novel biomarker of aging in C. elegans The increase in lysosomal pH in older worms is not a passive consequence of aging, but instead is timed with the cessation of reproduction, and correlates with the reduction in proteostasis in early adult life. Our results further implicate the steroid signaling pathway and DAF-16 in dynamically regulating lysosomal pH in the intestine of wild-type worms in response to the reproductive cycle. In the intestine of reproducing worms, DAF-16 promotes acidic lysosomes by upregulating the expression of v-ATPase genes. These findings support a model in which protein clearance in the soma is linked to reproduction in the gonad via the active regulation of lysosomal acidification.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Lisossomos/metabolismo , Reprodução , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Mucosa Intestinal/metabolismo , Proteostase , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
PLoS Genet ; 11(8): e1005429, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26247883

RESUMO

Proliferating eukaryotic cells undergo a finite number of cell divisions before irreversibly exiting mitosis. Yet pathways that normally limit the number of cell divisions remain poorly characterized. Here we describe a screen of a collection of 3762 single gene mutants in the yeast Saccharomyces cerevisiae, accounting for 2/3 of annotated yeast ORFs, to search for mutants that undergo an atypically high number of cell divisions. Many of the potential longevity genes map to cellular processes not previously implicated in mitotic senescence, suggesting that regulatory mechanisms governing mitotic exit may be broader than currently anticipated. We focused on an ER-Golgi gene cluster isolated in this screen to determine how these ubiquitous organelles integrate into mitotic longevity. We report that a chronic increase in ER protein load signals an expansion in the assembly of autophagosomes in an Ire1-independent manner, accelerates trafficking of high molecular weight protein aggregates from the cytoplasm to the vacuoles, and leads to a profound enhancement of daughter cell production. We demonstrate that this catabolic network is evolutionarily conserved, as it also extends reproductive lifespan in the nematode Caenorhabditis elegans. Our data provide evidence that catabolism of protein aggregates, a natural byproduct of high protein synthesis and turn over in dividing cells, is among the drivers of mitotic longevity in eukaryotes.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/fisiologia , Glicoproteínas de Membrana/fisiologia , Mitose , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Animais , Caenorhabditis elegans , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Genoma Fúngico , Genoma Helmíntico , Homeostase , Agregados Proteicos , Reprodução , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA