RESUMO
This study addresses the pivotal challenge of hydrogen production through methane decomposition, offering a pathway to achieving clean energy goals. Investigating the utilization of titania-modified zirconia dual redox supports (10TiZr) in iron or doped iron-based catalysts for the CH4 decomposition reaction, our research involves a thorough characterization process. This includes analyses of the surface area porosity, X-ray diffraction, Raman-infrared spectroscopy, and temperature-programmed reduction/oxidation. The observed sustained enhancement in catalytic activity over extended durations suggests the in situ formation of catalytically active sites. The introduction of Co or Ni into the 30Fe/10TiZr catalyst leads to the generation of a higher density of reducible species. Furthermore, the Ni-promoted 30Fe/10TiZr catalyst exhibits a lower crystallinity, indicating superior dispersion. Notably, the cobalt-promoted 30Fe/10TiZr catalyst achieves over 80% CH4 conversion and H2 yield within 3 h. Additionally, the Ni-promoted 30Fe/10TiZr catalyst attains a remarkable 87% CH4 conversion and 82% H2 yield after 3 h of the continuous process.
RESUMO
Methane decomposition is a promising route to synthesize COx -free hydrogen and carbon nanomaterials (CNMs ). In this work, the impregnation method was employed for the preparation of the catalysts. Systematic investigations on the activity and stability of Fe-based catalysts were carried out in a packed-bed micro-activity reactor at 800 °C with a feed gas flow rate of 18â mL/min. The effect of doping Y2 O3 , MgO, SiO2 and TiO2 over ZrO2 on the catalytic performance was also studied. BET revealed that the specific surface areas and pore volumes are increased after SiO2 , TiO2 , and Y2 O3 are added to ZrO2 while MgO had a negative impact and hence a little decrease in specific surface area is observed. The catalytic activity results showed that the Fe-based catalyst supported over TiO2 -doped ZrO2 that is, Fe-TiZr, demonstrated the highest activity and stability, with a maximum methane conversion of 81.3 % during 180â min time-on-stream. At 800 °C, a maximum initial methane conversion of 73 %, 38 %, 64 %, and 69 % and a final carbon yield of 121â wt. %, 55â wt. %, 354â wt. %, and 174â wt. % was achieved using Fe-MgZr, Fe-SiZr, Fe-TiZr and Fe-YZr catalysts, respectively. Moreover, bulk deposition of uniform carbon nanotubes with a high degree of graphitization and different diameters was observed over the catalysts.