Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(1): 370-387, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30497259

RESUMO

Highly proficient, promiscuous enzymes can be springboards for functional evolution, able to avoid loss of function during adaptation by their capacity to promote multiple reactions. We employ a systematic comparative study of structure, sequence, and substrate specificity to track the evolution of specificity and reactivity between promiscuous members of clades of the alkaline phosphatase (AP) superfamily. Construction of a phylogenetic tree of protein sequences maps out the likely transition zone between arylsulfatases (ASs) and phosphonate monoester hydrolases (PMHs). Kinetic analysis shows that all enzymes characterized have four chemically distinct phospho- and sulfoesterase activities, with rate accelerations ranging from 1011- to 1017-fold for their primary and 109- to 1012-fold for their promiscuous reactions, suggesting that catalytic promiscuity is widespread in the AP-superfamily. This functional characterization and crystallography reveal a novel class of ASs that is so similar in sequence to known PMHs that it had not been recognized as having diverged in function. Based on analysis of snapshots of catalytic promiscuity "in transition", we develop possible models that would allow functional evolution and determine scenarios for trade-off between multiple activities. For the new ASs, we observe largely invariant substrate specificity that would facilitate the transition from ASs to PMHs via trade-off-free molecular exaptation, that is, evolution without initial loss of primary activity and specificity toward the original substrate. This ability to bypass low activity generalists provides a molecular solution to avoid adaptive conflict.


Assuntos
Fosfatase Alcalina/metabolismo , Evolução Molecular , Fosfatase Alcalina/química , Bactérias/enzimologia , Domínio Catalítico , Cinética , Modelos Moleculares , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
2.
Chembiochem ; 18(11): 1001-1015, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464395

RESUMO

Catalytic promiscuity can facilitate evolution of enzyme functions-a multifunctional catalyst may act as a springboard for efficient functional adaptation. We test the effect of single mutations on multiple activities in two groups of promiscuous AP superfamily members to probe this hypothesis. We quantify the effect of site-saturating mutagenesis of an analogous, nucleophile-flanking residue in two superfamily members: an arylsulfatase (AS) and a phosphonate monoester hydrolase (PMH). Statistical analysis suggests that no one physicochemical characteristic alone explains the mutational effects. Instead, these effects appear to be dominated by their structural context. Likewise, the effect of changing the catalytic nucleophile itself is not reaction-type-specific. Mapping of "fitness landscapes" of four activities onto the possible variation of a chosen sequence position revealed tremendous potential for respecialization of AP superfamily members through single-point mutations, highlighting catalytic promiscuity as a powerful predictor of adaptive potential.


Assuntos
Substituição de Aminoácidos/genética , Evolução Molecular Direcionada , Hidrolases/genética , Fosfatase Alcalina/genética , Bactérias/enzimologia , Bactérias/genética , Catálise , Domínio Catalítico , Mutagênese Sítio-Dirigida , Fosfotransferases/genética , Especificidade por Substrato , Sulfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA