Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Front Cell Dev Biol ; 12: 1380059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533089

RESUMO

Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ ß-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 ß-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.

2.
Brain Sci ; 14(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38539600

RESUMO

The development of noninvasive and cost-effective methods of detecting Alzheimer's disease (AD) is essential for its early prevention and mitigation. We optimize the detection of AD using natural language processing (NLP) of spontaneous speech through the use of audio enhancement techniques and novel transcription methodologies. Specifically, we utilized Boll Spectral Subtraction to improve audio fidelity and created transcriptions using state-of-the-art AI services-locally-based Wav2Vec and Whisper, alongside cloud-based IBM Cloud and Rev AI-evaluating their performance against traditional manual transcription methods. Support Vector Machine (SVM) classifiers were then trained and tested using GPT-based embeddings of transcriptions. Our findings revealed that AI-based transcriptions largely outperformed traditional manual ones, with Wav2Vec (enhanced audio) achieving the best accuracy and F-1 score (0.99 for both metrics) for locally-based systems and Rev AI (standard audio) performing the best for cloud-based systems (0.96 for both metrics). Furthermore, this study revealed the detrimental effects of interviewer speech on model performance in addition to the minimal effect of audio enhancement. Based on our findings, current AI transcription and NLP technologies are highly effective at accurately detecting AD with available data but struggle to classify probable AD and mild cognitive impairment (MCI), a prodromal stage of AD, due to a lack of training data, laying the groundwork for the future implementation of an automatic AD detection system.

3.
medRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293012

RESUMO

As the impact of Alzheimer's disease (AD) is projected to grow in the coming decades as the world's population ages, the development of noninvasive and cost-effective methods of detecting AD is essential for the early prevention and mitigation of the progressive disease, alleviating its expected global impact. This study analyzes audio processing techniques and transcription methodologies to optimize the detection of AD through the natural language processing (NLP) of spontaneous speech. We enhanced audio fidelity using Boll Spectral Subtraction and evaluated the transcription accuracy of state-of-the-art AI services-locally-based Wav2Vec and Whisper, alongside cloud-based IBM Cloud and Rev AI-against traditional manual transcription methods. The choice between local and cloud-based solutions hinges on a trade-off between privacy, ongoing costs, and computational requirements. Leveraging OpenAI's GPT for word embeddings, we enhanced the training of Support Vector Machine (SVM) classifiers, which were crucial in analyzing transcripts and refining detection accuracy. Our findings reveal that AI-driven transcriptions significantly outperform manual counterparts when classifying AD and Control samples, with Wav2Vec using enhanced audio exhibiting the highest accuracy and F-1 scores (0.99 for both metrics) for locally based systems and Rev AI using unenhanced audio leading cloud-based methods with comparable precision (0.96 for both metrics). The study also uncovers the detrimental effect of including interviewer speech in recordings on model performance, advocating for the exclusion of such interactions to improve data quality for AD classification algorithms. Our comprehensive evaluation demonstrates that AI transcription (both Cloud and Local) and NLP technologies in their current forms can classify AD, as well as probable AD and mild cognitive impairment (MCI), a prodromal stage of AD, accurately but suffer from a lack of available training data. The insights garnered from this research lay the groundwork for future advancements in the noninvasive monitoring and early detection of cognitive impairments through linguistic analysis.

4.
Cell Death Dis ; 14(12): 819, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086796

RESUMO

The thioredoxin (TXN) system is an NADPH + H+/FAD redox-triggered effector that sustains homeostasis, bioenergetics, detoxifying drug networks, and cell survival in oxidative stress-related diseases. Elovanoid (ELV)-N34 is an endogenously formed lipid mediator in neural cells from omega-3 fatty acid precursors that modulate neuroinflammation and senescence gene programming when reduction-oxidation (redox) homeostasis is disrupted, enhancing cell survival. Limited proteolysis (LiP) screening of human retinal pigment epithelial (RPE) cells identified TXNRD1 isoforms 2, 3, or 5, the reductase of the TXN system, as an intracellular target of ELV-N34. TXNRD1 silencing confirmed that the ELV-N34 target was isoform 2 or 3. This lipid mediator induces TXNRD1 structure changes that modify the FAD interface domain, leading to its activity modulation. The addition of ELV-N34 decreased membrane and cytosolic TXNRD1 activity, suggesting localizations for the targeted reductase. These results show for the first time that the lipid mediator ELV-N34 directly modulates TXNRD1 activity, underling its protection in several pathologies when uncompensated oxidative stress (UOS) evolves.


Assuntos
Estresse Oxidativo , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/genética , Oxirredução , Isoformas de Proteínas/metabolismo , Citosol/metabolismo , Lipídeos
5.
Invest Ophthalmol Vis Sci ; 64(14): 10, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934161

RESUMO

Purpose: Patients deficient in peroxisomal ß-oxidation, which is essential for the synthesis of docosahexaenoic acid (DHA, C22:6n-3) and breakdown of very-long-chain polyunsaturated fatty acids (VLC-PUFAs), both important components of photoreceptor outer segments, develop retinopathy present with retinopathy. The representative mouse model lacking the central enzyme of this pathway, multifunctional protein 2 (Mfp2-/-), also show early-onset retinal decay and cell-autonomous retinal pigment epithelium (RPE) degeneration, accompanied by reduced plasma and retinal DHA levels. In this study, we investigated whether DHA supplementation can rescue the retinal degeneration of Mfp2-/- mice. Methods: Mfp2+/- breeding pairs and their offspring were fed a 0.12% DHA or control diet during gestation and lactation and until sacrifice. Offspring were analyzed for retinal function via electroretinograms and for lipid composition of neural retina and plasma with lipidome analysis and gas chromatography, respectively, and histologically using retinal sections and RPE flatmounts at the ages of 4, 8, and 16 weeks. Results: DHA supplementation to Mfp2-/- mice restored retinal DHA levels and prevented photoreceptor shortening, death, and impaired functioning until 8 weeks. In addition, rescue of retinal DHA levels temporarily improved the ability of the RPE to phagocytose outer segments and delayed the RPE dedifferentiation. However, despite the initial rescue of retinal integrity, DHA supplementation could not prevent retinal degeneration at 16 weeks. Conclusions: We reveal that the shortage of a systemic supply of DHA is pivotal for the early retinal degeneration in Mfp2-/- mice. Furthermore, we report that adequate retinal DHA levels are essential not only for photoreceptors but also for RPE homeostasis.


Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Humanos , Feminino , Animais , Camundongos , Ácidos Docosa-Hexaenoicos , Retina , Causalidade
6.
Neuron ; 111(19): 2945-2948, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797578

RESUMO

In this issue of Neuron, Nakamura et al.1 report the discovery that neuronally secreted phospholipase PLA2G2E releases dihomo-γ-linolenic acid (DGLA) that generates 15-hydroxy-eicosatrienoic acid (15-HETrE), which in turn induces peptidyl arginine deiminase 4 (PAD4/PADI4) to elicit neuronal pro-survival and pro-reparative events following ischemic brain injury.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Acidente Vascular Cerebral , Humanos , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Metabolismo dos Lipídeos , Encéfalo/metabolismo
7.
Sci Rep ; 13(1): 15841, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740008

RESUMO

Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood-brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6. Gene expression revealed increased anti-inflammatory and pro-homeostatic genes and decreases in expression of pro-inflammatory genes in the subcortex. Additionally, the FFAs elicit a comprehensive downregulation of inflammatory microglia/monocyte-derived macrophages and astrocyte-associated genes in the subcortical region. Functional analysis reveals inhibition of immune-related pathways and production of upstream molecules related to detrimental signaling events in post-stroke acute and subacute phases.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácidos Graxos não Esterificados , Neuroproteção , Acidente Vascular Cerebral/genética , Astrócitos
8.
Exp Eye Res ; 235: 109639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659709

RESUMO

Docosahexaenoic acid (DHA; 22:6) plays a key role in vision and is the precursor for very-long-chain polyunsaturated fatty acids (VLC-PUFAs). The release of 32- and 34-carbon VLC-PUFAs and DHA from sn-1 and sn-2 of phosphatidylcholine (PC) leads to the synthesis of cell-survival mediators, the elovanoids (ELVs) and neuroprotectin D1 (NPD1), respectively. Macula and periphery from age-related macular degeneration (AMD) donor retinas were assessed for the availability of DHA-related lipids by LC-MS/MS-based lipidomic analysis and MALDI-molecular imaging. We found reduced retina DHA and VLC-PUFA pathways to synthesize omega-3 ELVs from precursors that likely resulted in altered disks and photoreceptor loss. Additionally, we compared omega-3 (n-3) fatty acid with DHA (22:6) and omega-6 (n-6) fatty acid with arachidonic acid (AA; 20:4) pathways. n-3 PC(22:6/22:6, 44:12) and n-6 PC(20:4/20:4, 40:8) showed differences among male/female, macula/periphery, and normal/AMD retinas. Periphery of AMD retina males increased 44:12 abundance, while normal females increased 40:8 (all macula had an upward 40:8 tendency). We also showed that female AMD switched from n-3 to n-6 fatty acids; most changes in AMD occurred in the periphery of female AMD retinas. DHA and VLC-PUFA release from PCs leads to conversion in pro-survival NPD1 and ELVs. The loss of the neuroprotective precursors of ELVs in the retina periphery from AMD facilitates uncompensated stress and cell loss. In AMD, the female retina loses peripheral rods VLC-PUFAs to about 33% less than in males limiting ELV formation and its protective bioactivity.


Assuntos
Ácidos Graxos Ômega-3 , Degeneração Macular , Feminino , Masculino , Humanos , Regulação para Baixo , Cromatografia Líquida , Espectrometria de Massas em Tandem
9.
Cell Mol Neurobiol ; 43(7): 3555-3573, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37270727

RESUMO

Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/metabolismo
10.
Pharmacol Ther ; 249: 108482, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385300

RESUMO

Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retina/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Lipofuscina/genética , Lipofuscina/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
11.
Front Neurol ; 14: 1155479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144000

RESUMO

Mild Traumatic Brain Injury (mild TBI)/concussion is a common sports injury, especially common in football players. Repeated concussions are thought to lead to long-term brain damage including chronic traumatic encephalopathy (CTE). With the worldwide growing interest in studying sport-related concussion the search for biomarkers for early diagnosis and progression of neuronal injury has also became priority. MicroRNAs are short, non-coding RNAs that regulate gene expression post-transcriptionally. Due to their high stability in biological fluids, microRNAs can serve as biomarkers in a variety of diseases including pathologies of the nervous system. In this exploratory study, we have evaluated changes in the expression of selected serum miRNAs in collegiate football players obtained during a full practice and game season. We found a miRNA signature that can distinguish with good specificity and sensitivity players with concussions from non-concussed players. Furthermore, we found miRNAs associated with the acute phase (let-7c-5p, miR-16-5p, miR-181c-5p, miR-146a-5p, miR-154-5p, miR-431-5p, miR-151a-5p, miR-181d-5p, miR-487b-3p, miR-377-3p, miR-17-5p, miR-22-3p, and miR-126-5p) and those whose changes persist up to 4 months after concussion (miR-17-5p and miR-22-3p).

12.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100955

RESUMO

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Assuntos
Apoptose , Caspases , Animais , Humanos , Apoptose/genética , Morte Celular , Caspases/genética , Caspases/metabolismo , Carcinogênese , Mamíferos/metabolismo
13.
Med Res Arch ; 11(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36777192

RESUMO

Despite displaying efficacy in experimental stroke studies, neuroprotection has failed in clinical trials. The translational difficulties include a limited methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to standardized strokes in animal models. Promising neuroprotective approaches based on a deeper understanding of the complex pathophysiology of ischemic stroke, such as blocking pro-inflammatory pathways plus pro-survival mediators, are now evaluated in preclinical studies. Combinatorial therapy has become increasingly attractive in recent years as recognizing the complexity of stroke progression becomes evident. The paper aimed to test the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAF-R) with LAU-0901 plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. We have demonstrated that LAU-0901 plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU-0901 or AT-NPD1 alone at considerably moderate doses, and it has a broad therapeutic window extending to 6 hours after stroke onset.

14.
Cell Mol Neurobiol ; 43(3): 1077-1096, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35622188

RESUMO

Wnt5a triggers inflammatory responses and damage via NFkB/p65 in retinal pigment epithelial (RPE) cells undergoing uncompensated oxidative stress (UOS) and in experimental ischemic stroke. We found that Wnt5a-Clathrin-mediated uptake leads to NFkB/p65 activation and that Wnt5a is secreted in an exosome-independent fashion. We uncovered that docosahexaenoic acid (DHA) and its derivative, Neuroprotectin D1 (NPD1), upregulate c-Rel expression that, as a result, blunts Wnt5a abundance by competing with NFkB/p65 on the Wnt5a promoter A. Wnt5a increases in ischemic stroke penumbra and blood, while DHA reduces Wnt5a abundance with concomitant neuroprotection. Peptide inhibitor of Wnt5a binding, Box5, is also neuroprotective. DHA-decreased Wnt5a expression is concurrent with a drop in NFkB-driven inflammatory cytokine expression, revealing mechanisms after stroke, as in RPE cells exposed to UOS. Limiting the Wnt5a activity via Box5 reduces stroke size, suggesting neuroprotection pertinent to onset and progression of retinal degenerations and stroke consequences. NPD1 disrupts Wnt5a feedback loop at two sites: (1) decreasing FZD5, thus Wnt5a internalization, and (2) by enhancing cREL activity, which competes with p65/NFkB downstream endocytosis. As a result, Wnt5a expression is reduced, and so is its inflammatory signaling in RPE cells and neurons in ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Neuroproteção , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Proteína Wnt-5a , Receptores Frizzled/metabolismo
16.
Cell Mol Neurobiol ; 43(2): 797-811, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35362880

RESUMO

Alzheimer's disease (AD) develops into dementia over a period of several years, during which subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) can be used as intermediary diagnoses of increasing severity. Chronic neuroinflammation resulting from insufficient resolution is involved in the pathogenesis of AD and is associated with cognitive impairment. Specialized pro-resolving lipid mediators (LMs) that promote the resolution of inflammation may be valuable markers in AD diagnosis and as therapeutic targets. Liquid chromatography-tandem mass spectrometry was used to analyze pro-resolving and pro-inflammatory LMs in cerebrospinal fluid (CSF) from patients with cognitive impairment ranging from subjective impairment to a diagnosis of AD and correlated to cognition, CSF tau, and ß-amyloid. Resolvin (Rv) D4, RvD1, neuroprotectin D1 (NPD1), maresin 1 (MaR1), and RvE4 were lower in AD and/or MCI compared to SCI. The pro-inflammatory LTB4 and 15-HETE were higher in AD and MCI, respectively, while PGD2, PGE2, and PGF2a were decreased in AD, compared to SCI. RvD4 was also negatively correlated to AD tangle biomarkers, and positive correlations to cognitive test scores were observed for both pro-resolving LMs and their precursor fatty acids. In this exploratory study of the lipidome in CSF of AD, MCI, and SCI, the results indicate a shift in the LM profile from pro-resolving to pro-inflammatory in progression to AD, suggesting that it may be of use as a biomarker when followed by confirmation by replication studies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Cognição , Inflamação , Biomarcadores , Proteínas tau , Fragmentos de Peptídeos , Progressão da Doença
17.
Int J Biol Macromol ; 222(Pt A): 972-993, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174872

RESUMO

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no solid evidence has been found to support any hypothesis on the origin of this virus, and the issue continue to resurface over and over again. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins in 24 geo-locations across different continents. The results showed an evenly uneven distribution of the unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across these 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations studied. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and for the preparation of meeting the challenges of potential future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Mutação
18.
Front Neurosci ; 16: 926629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873810

RESUMO

Retinal pigment epithelial (RPE) cells sustain photoreceptor integrity, and when this function is disrupted, retinal degenerations ensue. Herein, we characterize a new cell line from human RPE that we termed ABC. These cells remarkably recapitulate human eye native cells. Distinctive from other epithelia, RPE cells originate from the neural crest and follow a neural development but are terminally differentiated into "epithelial" type, thus sharing characteristics with their neuronal lineages counterparts. Additionally, they form microvilli, tight junctions, and honeycomb packing and express distinctive markers. In these cells, outer segment phagocytosis, phagolysosome fate, phospholipid metabolism, and lipid mediator release can be studied. ABC cells display higher resistance to oxidative stress and are protected from senescence through mTOR inhibition, making them more stable in culture. The cells are responsive to Neuroprotectin D1 (NPD1), which downregulates inflammasomes and upregulates antioxidant and anti-inflammatory genes. ABC gene expression profile displays close proximity to native RPE lineage, making them a reliable cell system to unravel signaling in uncompensated oxidative stress (UOS) and retinal degenerative disease to define neuroprotection sites.

19.
J Stroke Cerebrovasc Dis ; 31(8): 106585, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717719

RESUMO

OBJECTIVE: We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated. MATERIALS AND METHODS: Male SD rats were subjected to 2 hours of MCAo. Behavior testing (days 1-7) and ex vivo MRI on day 7 were conducted. In dose-response, rats were treated with LAU (45 and 60 mg/kg; IP), AT-NPD1 (111, 222, 333 µg/kg; IV), LAU+AT-NPD1 (LAU at 3 hours and AT-NPD1 at 3.15 hours) or vehicle. In the therapeutic window, vehicle, LAU (60 mg/kg), AT-NPD1 (222 µg/kg), and LAU+AT-NPD1 were administered at 3, 4, 5, and 6 hours after onset of MCAo. RESULTS: LAU and AT-NPD1 treatments alone improved behavior by 40-42% and 20-30%, respectively, and LAU+AT-NPD1 by 40% compared to the vehicle group. T2-weighted imaging (T2WI) volumes were reduced with all doses of LAU and AT-NPD1 by 73-90% and 67-83% and LAU+AT-NPD1 by 94% compared to vehicle. In the therapeutic window, LAU+AT-NPD1, when administered at 3, 4, 5, and 6 hours, improved behavior by 50, 56, 33, and 26% and reduced T2WI volumes by 93, 90, 82, and 84% compared to vehicle. CONCLUSIONS: We have shown here for the first time that LAU plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU or AT-NPD1 alone at considerably moderate doses. It has a broad therapeutic window extending to 6 hours after stroke onset.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Aspirina/uso terapêutico , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA