Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
JAMA Netw Open ; 7(2): e240407, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411963

RESUMO

IMPORTANCE: Platinum-based chemotherapy is the backbone of standard-of-care treatment for patients with advanced-stage, high-grade serous carcinoma (HGSC), the most common form of ovarian cancer; however, one-third of patients have or acquire chemoresistance toward platinum-based therapies. OBJECTIVE: To demonstrate the utility of tumor-stroma proportion (TSP) as a predictive biomarker of chemoresistance of HGSC, progression-free survival (PFS), and overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: This prognostic study leveraged tumors from patients with HGSC in The Cancer Genome Atlas (TCGA) cohort (1993-2013) and an independent cohort of resected clinical specimens from patients with HGSC (2004-2014) available in diagnostic and tissue microarray formats from the University of Tübingen in Germany. Data analysis was conducted from January 2021 to January 2024. EXPOSURE: Diagnosis of HGSC. MAIN OUTCOMES AND MEASURES: Principal outcome measures were the ability of TSP to predict platinum chemoresistance, PFS, and OS. Using hematoxylin and eosin-stained slides from the Tübingen cohort (used for routine diagnostic assessment from surgical specimens) as well as tissue microarrays, representative sections of tumors for scoring of TSP were identified using previously evaluated cutoffs of 50% stroma or greater (high TSP) and less than 50% stroma (low TSP). Digitized slides from the TCGA Cohort were analyzed and scored in a similar fashion. Kaplan-Meier time-to-event functions were fit to estimate PFS and OS. RESULTS: The study included 103 patients (mean [SD] age, 61.6 [11.1] years) from the TCGA cohort and 192 patients (mean [SD] age at diagnosis, 63.7 [11.1] years) from the Tübingen cohort. In the TCGA cohort, there was no significant association of TSP levels with chemoresistance, PFS, or OS. However, in the Tübingen cohort, high TSP was associated with significantly shorter PFS (HR, 1.586; 95% CI, 1.093-2.302; P = .02) and OS (hazard ratio [HR], 1.867; 1.249-2.789; P = .002). Patients with chemoresistant tumors were twice as likely to have high TSP as compared to patients with chemosensitive tumors (HR, 2.861; 95% CI, 1.256-6.515; P = .01). In tissue microarrays from 185 patients from the Tübingen cohort, high TSP was again associated with significantly shorter PFS (HR, 1.675; 95% CI, 1.012-2.772 P = .04) and OS (HR, 2.491; 95% CI, 1.585-3.912; P < .001). CONCLUSIONS AND RELEVANCE: In this prognostic study, TSP was a consistent and reproducible marker of clinical outcome measures of HGSC, including PFS, OS, and platinum chemoresistance. Accurate and cost-effective predictive biomarkers of platinum chemotherapy resistance are needed to identify patients most likely to benefit from standard treatments, and TSP can easily be implemented and integrated into prospective clinical trial design and adapted to identify patients who are least likely to benefit long-term from conventional platinum-based cytotoxic chemotherapy treatment at the time of initial diagnosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Pessoa de Meia-Idade , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Estudos Prospectivos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Análise de Dados , Amarelo de Eosina-(YS) , Platina
2.
Cells ; 13(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201298

RESUMO

The brain and the ovaries are in a state of continuous communication [...].


Assuntos
Encéfalo , Ovário , Feminino , Humanos , Comunicação
3.
J Biol Chem ; 299(11): 105355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858676

RESUMO

Uncoordinated protein 45A (UNC-45A) is the only known ATP-independent microtubule (MT)-severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells, UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT-severing proteins on MT lattice curvature is largely undefined. Here, we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and total internal fluorescence microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT-straightening effects of the drug.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos , Paclitaxel , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Paclitaxel/farmacologia , Paclitaxel/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
4.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745537

RESUMO

UNC-45A is the only known ATP-independent microtubule (MT) severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT severing proteins on MT lattice curvature is largely undefined. Here we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and TIRF microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT straightening effects of the drug. Significance: Our findings reveal for the first time that UNC-45A increases MT curvature. This hints that UNC-45A-mediated MT severing could be due to the worsening of MT curvature and provide a mechanistic understanding of how this MT-severing protein may act. UNC-45A is the only MT severing protein expressed in human cancers, including paclitaxel-resistant ovarian cancer. Our finding that UNC-45A counteracts the paclitaxel-straightening effects of MTs in cells suggests an additional mechanism through which cancer cells escape drug treatment.

5.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425832

RESUMO

Background: The tumor stroma is composed of a complex network of non-cancerous cells and extracellular matrix elements that collectively are crucial for cancer progression and treatment response. Within the realm of ovarian cancer, the expression of the stromal gene cluster has been linked to poorer progression-free and overall survival rates. However, in the age of precision medicine and genome sequencing, the notion that the simple measurement of tumor-stroma proportion alone can serve as a biomarker for clinical outcome is a topic that continues to generate controversy and provoke discussion. Our current study reveals that it is the quantity of stroma, rather than its quality, that serves as a clinically significant indicator of patient outcome in ovarian cancer. Methods: This study leveraged the High-Grade-Serous-Carcinoma (HGSC) cohort of the publicly accessible Cancer Genome Atlas Program (TCGA) along with an independent cohort comprising HGSC clinical specimens in diagnostic and Tissue Microarray formats. Our objective was to investigate the correlation between the Tumor-Stroma-Proportion (TSP) and progression-free survival (PFS), overall survival (OS), and response to chemotherapy. We assessed these associations using H&E-stained slides and tissue microarrays. Our analysis employed semi-parametric models that accounted for age, metastases, and residual disease as controlling factors. Results: We found that high TSP (>50% stroma) was associated with significantly shorter progression-free survival (PFS) (p=0.016) and overall survival (OS) (p=0.006). Tumors from patients with chemoresistant tumors were twice as likely to have high TSP as compared to tumors from chemosensitive patients (p=0.012). In tissue microarrays, high TSP was again associated with significantly shorter PFS (p=0.044) and OS (p=0.0001), further confirming our findings. The Area Under the ROC curve for the model predicting platinum was estimated at 0.7644. Conclusions: In HGSC, TSP was a consistent and reproducible marker of clinical outcome measures, including PFS, OS, and platinum chemoresistance. Assessment of TSP as a predictive biomarker that can be easily implemented and integrated into prospective clinical trial design and adapted to identify, at time of initial diagnosis, patients who are least likely to benefit long-term from conventional platinum-based cytotoxic chemotherapy treatment.

6.
Cancer Res Commun ; 2(8): 784-794, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36082022

RESUMO

Targeting glutamine metabolism has emerged as a novel therapeutic strategy for several human cancers, including ovarian cancer. The primary target of this approach is the kidney isoform of glutaminase, glutaminase 1 (GLS1), a key enzyme in glutamine metabolism that is overexpressed in several human cancers. A first-in-class inhibitor of GLS1, called CB839 (Telaglenastat), has been investigated in several clinical trials, with promising results. The first clinical trial of CB839 in platinum-resistant ovarian cancer patients is forthcoming. ARID1A-mutated ovarian clear cell carcinoma (OCCC) is a relatively indolent and chemoresistant ovarian cancer histotype. In OCCC-derived cells ARID1A simultaneously drives GLS1 expression and metabolism reprograming. In ARID1A-mutated OCCC-derived mouse models, loss of ARID1A corresponds to GLS1 upregulation and increases sensitivity to GLS1 inhibition. Thus, targeting of GLS1 with CB839 has been suggested as a targeted approach for OCCC patients with tumors harboring ARID1A-mutations. Here, we investigated whether GLS1 is differentially expressed between OCCC patients whose tumors are ARID1A positive and patients whose tumors are ARID1A negative. In clinical specimens of OCCC, we found that GLS1 overexpression was not correlated with ARID1A loss. In addition, GLS1 overexpression was associated with better clinical outcomes. Our findings have implications for human trials using experimental therapeutics targeting GLS1.


Assuntos
Adenocarcinoma de Células Claras , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adenocarcinoma de Células Claras/genética , Proteínas de Ligação a DNA/genética , Glutaminase/genética , Glutamina/metabolismo , Neoplasias Ovarianas/genética , Fatores de Proteção , Fatores de Transcrição/genética
7.
Cells ; 10(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206743

RESUMO

UNC-45A (Protein unc-45 homolog A) is a cytoskeletal-associated protein with a dual and non-mutually exclusive role as a regulator of the actomyosin system and a Microtubule (MT)-destabilizing protein, which is overexpressed in human cancers including in ovarian cancer patients resistant to the MT-stabilizing drug paclitaxel. Mapping of UNC-45A in the mouse upper genital tract and central nervous system reveals its enrichment not only in highly proliferating and prone to remodeling cells, but also in microtubule-rich areas, of the ovaries and the nervous system, respectively. In both apparatuses, UNC-45A is also abundantly expressed in the ciliated epithelium. As regulators of actomyosin contractility and MT stability are essential for the physiopathology of the female reproductive tract and of neuronal development, our findings suggest that UNC-45A may have a role in ovarian cancer initiation and development as well as in neurodegeneration.


Assuntos
Genitália/citologia , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Sistema Nervoso/metabolismo , Animais , Proliferação de Células , Cílios/metabolismo , Tubas Uterinas/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Ovário/metabolismo , Medula Espinal/metabolismo
8.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947138

RESUMO

Ovarian clear cell carcinoma (OCCC) is a rare but chemorefractory tumor. About 50% of all OCCC patients have inactivating mutations of ARID1A, a member of the SWI/SNF chromatin-remodeling complex. Members of the SWI/SNF remodeling have emerged as regulators of the energetic metabolism of mammalian cells; however, the role of ARID1A as a modulator of the mitochondrial metabolism in OCCCs is yet to be defined. Here, we show that ARID1A loss results in increased mitochondrial metabolism and renders ARID1A-mutated cells increasingly and selectively dependent on it. The increase in mitochondrial activity following ARID1A loss is associated with increase in c-Myc expression and increased mitochondrial number and reduction of their size consistent with a higher mitochondrial cristae/outer membrane ratio. Significantly, preclinical testing of the complex I mitochondrial inhibitor IACS-010759 showed it extends overall survival in a preclinical model of ARID1A-mutated OCCC. These findings provide for the targeting mitochondrial activity in ARID1A-mutated OCCCs.


Assuntos
Adenocarcinoma de Células Claras/tratamento farmacológico , Antineoplásicos/uso terapêutico , Proteínas de Ligação a DNA/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Oxidiazóis/uso terapêutico , Piperidinas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Piperidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Esferoides Celulares , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Cell Sci ; 134(1)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33262310

RESUMO

In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos , Animais , Humanos , Chaperonas Moleculares , Miosina Tipo II/genética , Miosinas , Ratos
10.
J Med Chem ; 63(24): 15075-15093, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33146523

RESUMO

The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been studied extensively. Despite their expected general thiol reactivity, these compounds display considerable degrees of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570, RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these compounds is their targeting of the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. Gene expression profiling experiments have shown induction of responses characteristic of UPS inhibition, and experiments using cellular reporter proteins have shown that proteasome inhibition is associated with cell death. Other mechanisms of action such as reactivation of mutant p53, stimulation of steroid receptor coactivators, and induction of protein cross-linking have also been described. Although unsuitable as biological probes due to widespread reactivity, dienone compounds are cytotoxic to apoptosis-resistant tumor cells and show activity in animal tumor models.


Assuntos
Alcenos/química , Antineoplásicos/química , Alcenos/farmacologia , Alcenos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antiprotozoários/química , Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Azepinas/química , Azepinas/farmacologia , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Linhagem Celular , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Piperidonas/química , Plasmodium falciparum/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Esteroides/agonistas , Receptores de Esteroides/metabolismo , Ubiquitina/antagonistas & inibidores , Ubiquitina/metabolismo
11.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429099

RESUMO

Following the outbreak of novel severe acute respiratory syndrome (SARS)-coronavirus (CoV)2, the majority of nations are struggling with countermeasures to fight infection, prevent spread and improve patient survival. Considering that the pandemic is a recent event, no large clinical trials have been possible and since coronavirus specific drug are not yet available, there is no strong consensus on how to treat the coronavirus disease 2019 (COVID-19) associated viral pneumonia. Coronaviruses code for an important multifunctional enzyme named papain-like protease (PLP), that has many roles in pathogenesis. First, PLP is one of the two viral cysteine proteases, along with 3-chymotripsin-like protease, that is responsible for the production of the replicase proteins required for viral replication. Second, its intrinsic deubiquitinating and deISGylating activities serve to antagonize the host's immune response that would otherwise hinder infection. Both deubiquitinating and deISGylating functions involve the removal of the small regulatory polypeptides, ubiquitin and ISG15, respectively, from target proteins. Ubiquitin modifications can regulate the innate immune response by affecting regulatory proteins, either by altering their stability via the ubiquitin proteasome pathway or by directly regulating their activity. ISG15 is a ubiquitin-like modifier with pleiotropic effects, typically expressed during the host cell immune response. PLP inhibitors have been evaluated during past coronavirus epidemics, and have showed promising results as an antiviral therapy in vitro. In this review, we recapitulate the roles of PLPs in coronavirus infections, report a list of PLP inhibitors and suggest possible therapeutic strategies for COVID-19 treatment, using both clinical and preclinical drugs.


Assuntos
Betacoronavirus/enzimologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Animais , COVID-19 , Coronavirus/enzimologia , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Cisteína Endopeptidases , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Proteínas não Estruturais Virais/antagonistas & inibidores
12.
Cancers (Basel) ; 12(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272746

RESUMO

Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.

13.
Clin Cancer Res ; 26(13): 3397-3407, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060098

RESUMO

PURPOSE: Clear cell ovarian carcinoma (CCOC) is an aggressive disease that often demonstrates resistance to standard chemotherapies. Approximately 25% of patients with CCOC show a strong APOBEC mutation signature. Here, we determine which APOBEC3 enzymes are expressed in CCOC, establish clinical correlates, and identify a new biomarker for detection and intervention. EXPERIMENTAL DESIGNS: APOBEC3 expression was analyzed by IHC and qRT-PCR in a pilot set of CCOC specimens (n = 9 tumors). The IHC analysis of APOBEC3B was extended to a larger cohort to identify clinical correlates (n = 48). Dose-response experiments with platinum-based drugs in CCOC cell lines and carboplatin treatment of patient-derived xenografts (PDXs) were done to address mechanistic linkages. RESULTS: One DNA deaminase, APOBEC3B, is overexpressed in a formidable subset of CCOC tumors and is low or absent in normal ovarian and fallopian tube epithelial tissues. High APOBEC3B expression associates with improved progression-free survival (P = 0.026) and moderately with overall survival (P = 0.057). Cell-based studies link APOBEC3B activity and subsequent uracil processing to sensitivity to cisplatin and carboplatin. PDX studies extend this mechanistic relationship to CCOC tissues. CONCLUSIONS: These studies demonstrate that APOBEC3B is overexpressed in a subset of CCOC and, contrary to initial expectations, associated with improved (not worse) clinical outcomes. A likely molecular explanation is that APOBEC3B-induced DNA damage sensitizes cells to additional genotoxic stress by cisplatin. Thus, APOBEC3B is a molecular determinant and a candidate predictive biomarker of the therapeutic response to platinum-based chemotherapy. These findings may have broader translational relevance, as APOBEC3B is overexpressed in many different cancer types.


Assuntos
Citidina Desaminase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias Ovarianas/metabolismo , Platina/farmacologia , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citidina Desaminase/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Mutações Sintéticas Letais/efeitos dos fármacos , Mutações Sintéticas Letais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Biol Ther ; 20(10): 1304-1313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31328624

RESUMO

UNC-45A is an ubiquitously expressed protein highly conserved throughout evolution. Most of what we currently know about UNC-45A pertains to its role as a regulator of the actomyosin system. However, emerging studies from both our and other laboratories support a role of UNC-45A outside of actomyosin regulation. This includes studies showing that UNC-45A: regulates gene transcription, co-localizes and biochemically co-fractionates with gamma tubulin and regulates centrosomal positioning, is found in the same subcellular fractions where MT-associated proteins are, and is a mitotic spindle-associated protein with MT-destabilizing activity in absence of the actomyosin system. Here, we extended our previous findings and show that UNC45A is variably expressed across a spectrum of cell lines with the highest level being found in HeLa cells and in ovarian cancer cells inherently paclitaxel-resistant. Furthermore, we show that UNC-45A is preferentially expressed in epithelial cells, localizes to mitotic spindles in clinical tumor specimens of cancer and co-localizes and co-fractionates with MTs in interphase cells independent of actin or myosin. In sum, we report alteration of UNC45A localization in the setting of chemotherapeutic treatment of cells with paclitaxel, and localization of UNC45A to MTs both in vitro and in vivo. These findings will be important to ongoing and future studies in the field that further identify the important role of UNC45A in cancer and other cellular processes.


Assuntos
Células Epiteliais/metabolismo , Interfase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microtúbulos/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Especificidade de Órgãos , Ligação Proteica , Transporte Proteico , Fuso Acromático/metabolismo
15.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626133

RESUMO

Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly, independent of microenvironmental factors, mitochondria spatial redistribution has been associated to both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as critical in sustaining solid tumor progression.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Mitocôndrias/metabolismo , Neoplasias Ovarianas/terapia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Esferoides Celulares/patologia , Microambiente Tumoral
16.
Mol Cancer Res ; 17(2): 370-383, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30322860

RESUMO

UNC-45A, a highly conserved member of the UCS (UNC45A/CRO1/SHE4P) protein family of cochaperones, plays an important role in regulating cytoskeletal-associated functions in invertebrates and mammalian cells, including cytokinesis, exocytosis, cell motility, and neuronal development. Here, for the first time, UNC-45A is demonstrated to function as a mitotic spindle-associated protein that destabilizes microtubules (MT) activity. Using in vitro biophysical reconstitution and total internal reflection fluorescence microscopy analysis, we reveal that UNC-45A directly binds to taxol-stabilized MTs in the absence of any additional cellular cofactors or other MT-associated proteins and acts as an ATP-independent MT destabilizer. In cells, UNC-45A binds to and destabilizes mitotic spindles, and its depletion causes severe defects in chromosome congression and segregation. UNC-45A is overexpressed in human clinical specimens from chemoresistant ovarian cancer and that UNC-45A-overexpressing cells resist chromosome missegregation and aneuploidy when treated with clinically relevant concentrations of paclitaxel. Lastly, UNC-45A depletion exacerbates paclitaxel-mediated stabilizing effects on mitotic spindles and restores sensitivity to paclitaxel. IMPLICATIONS: These findings reveal novel and significant roles for UNC-45A in regulation of cytoskeletal dynamics, broadening our understanding of the basic mechanisms regulating MT stability and human cancer susceptibility to paclitaxel, one of the most widely used chemotherapy agents for the treatment of human cancers.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HeLa , Humanos , Camundongos , Células NIH 3T3
17.
Methods Mol Biol ; 1907: 83-90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30542992

RESUMO

Here we describe a method for identifying genes and genetic pathways responsible for chemoresistance in cancer cells. The method is based on generation and characterization of matched pairs of chemotherapy-sensitive/chemotherapy-resistant cancer cell lines. In this protocol we are using endometrial cancer cell lines treated with carboplatin and paclitaxel, which are first-line chemotherapies for gynecologic malignancies. The chemoresistant cells and their chemosensitive counterparts are used for downstream applications including bulk RNA-sequencing analysis to identify a set of genes and pathways that are associated with chemoresistance. Identification of pathways responsible for innate or acquired chemoresistance is of paramount importance for the identification of biomarkers for cancer risk stratification and prognosis, and as a pharmacogenomics model for identification of alternative chemotherapy approaches for treatment of patients with recurrent and chemoresistant disease.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias do Endométrio/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Neoplasias/genética , Análise de Sequência de RNA/métodos , Algoritmos , Neoplasias do Endométrio/diagnóstico , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
18.
Front Cell Dev Biol ; 6: 95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333973

RESUMO

Intercellular communication is vital to the ecosystem of cancer cell organization and invasion. Identification of key cellular cargo and their varied modes of transport are important considerations in understanding the basic mechanisms of cancer cell growth. Gap junctions, exosomes, and apoptotic bodies play key roles as physical modalities in mediating intercellular transport. Tunneling nanotubes (TNTs)-narrow actin-based cytoplasmic extensions-are unique structures that facilitate direct, long distance cell-to-cell transport of cargo, including microRNAs, mitochondria, and a variety of other sub cellular components. The transport of cargo via TNTs occurs between malignant and stromal cells and can lead to changes in gene regulation that propagate the cancer phenotype. More notably, the transfer of these varied molecules almost invariably plays a critical role in the communication between cancer cells themselves in an effort to resist death by chemotherapy and promote the growth and metastases of the primary oncogenic cell. The more traditional definition of "Systems Biology" is the computational and mathematical modeling of complex biological systems. The concept, however, is now used more widely in biology for a variety of contexts, including interdisciplinary fields of study that focus on complex interactions within biological systems and how these interactions give rise to the function and behavior of such systems. In fact, it is imperative to understand and reconstruct components in their native context rather than examining them separately. The long-term objective of evaluating cancer ecosystems in their proper context is to better diagnose, classify, and more accurately predict the outcome of cancer treatment. Communication is essential for the advancement and evolution of the tumor ecosystem. This interplay results in cancer progression. As key mediators of intercellular communication within the tumor ecosystem, TNTs are the central topic of this article.

20.
Horm Cancer ; 9(5): 326-337, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29951943

RESUMO

Despite advances in surgical technique and adjuvant treatment, endometrial cancer has recently seen an increase in incidence and mortality in the USA. The majority of endometrial cancers can be cured by surgery alone or in combination with adjuvant chemo- or radiotherapy; however, a subset of patients experience recurrence for reasons that remain unclear. Recurrence is associated with chemoresistance to carboplatin and paclitaxel and consequentially, high mortality. Understanding the pathways involved in endometrial cancer chemoresistance is paramount for the identification of biomarkers and novel molecular targets for this disease. Here, we generated the first matched pairs of carboplatin-sensitive/carboplatin-resistant and paclitaxel-sensitive/paclitaxel-resistant endometrial cancer cells and subjected them to bulk RNA sequencing analysis. We found that 45 genes are commonly upregulated in carboplatin- and paclitaxel-resistant cells as compared to controls. Of these, the leukemia inhibitory factor, (LIF), the protein tyrosine phosphatase type IVA, member 3 (PTP4A3), and the transforming growth factor beta 1 (TGFB1) showed a highly significant correlation between expression level and endometrial cancer overall survival (OS) and can stratify the 545 endometrial cancer patients in the TCGA cohort into a high-risk and low-risk-cohorts. Additionally, four genes within the 45 upregulated chemoresistance-associated genes are ADAMTS5, MICAL2, STAT5A, and PTP4A3 codes for proteins for which small-molecule inhibitors already exist. We identified these proteins as molecular targets for chemoresistant endometrial cancer and showed that treatment with their correspondent inhibitors effectively killed otherwise chemoresistant cells. Collectively, these findings underline the utility of matched pair of chemosensitive and chemoresistant cancer cells to identify markers for endometrial cancer risk stratification and to serve as a pharmacogenomics model for identification of alternative chemotherapy approaches for treatment of patients with recurrent disease.


Assuntos
Biomarcadores/química , Carboplatina/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Paclitaxel/uso terapêutico , Análise de Sequência de RNA/métodos , Carboplatina/farmacologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Masculino , Paclitaxel/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA