Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577611

RESUMO

Synaptic configurations in precisely wired circuits underpin how sensory information is processed by the nervous system, and the emerging animal behavior. This is best understood for chemical synapses, but far less is known about how electrical synaptic configurations modulate, in vivo and in specific neurons, sensory information processing and context-specific behaviors. We discovered that INX-1, a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies during C. elegans thermotaxis behavior. INX-1 couples two bilaterally symmetric interneurons, and this configuration is required for the integration of sensory information during migration of animals across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold temperature stimuli, resulting in abnormally longer run durations and context-irrelevant tracking of isotherms. Our study uncovers a conserved configuration of electrical synapses that, by increasing neuronal capacitance, enables differential processing of sensory information and the deployment of context-specific behavioral strategies.

2.
Elife ; 112022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471149

RESUMO

Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here, we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. Immediate early genes (IEGs) remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the IEGs Fos formed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterized by long-range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend on cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Expressão Gênica , Camundongos , Neurônios/metabolismo , Coesinas
3.
Nat Commun ; 13(1): 55, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013139

RESUMO

Although the synaptic alterations associated with the stress-related mood disorder major depression has been well-documented, the underlying transcriptional mechanisms remain poorly understood. Here, we perform complementary bulk nuclei- and single-nucleus transcriptome profiling and map locus-specific chromatin interactions in mouse neocortex to identify the cell type-specific transcriptional changes associated with stress-induced behavioral maladaptation. We find that cortical excitatory neurons, layer 2/3 neurons in particular, are vulnerable to chronic stress and acquire signatures of gene transcription and chromatin structure associated with reduced neuronal activity and expression of Yin Yang 1 (YY1). Selective ablation of YY1 in cortical excitatory neurons enhances stress sensitivity in both male and female mice and alters the expression of stress-associated genes following an abbreviated stress exposure. These findings demonstrate how chronic stress impacts transcription in cortical excitatory neurons and identify YY1 as a regulator of stress-induced maladaptive behavior in mice.


Assuntos
Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Animais , Comportamento Animal , Cromatina/metabolismo , Epigenômica , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Fisiológico
5.
Nat Neurosci ; 23(6): 707-717, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451484

RESUMO

Neuronal activation induces rapid transcription of immediate early genes (IEGs) and longer-term chromatin remodeling around secondary response genes (SRGs). Here, we use high-resolution chromosome-conformation-capture carbon-copy sequencing (5C-seq) to elucidate the extent to which long-range chromatin loops are altered during short- and long-term changes in neural activity. We find that more than 10% of loops surrounding select IEGs, SRGs, and synaptic genes are induced de novo during cortical neuron activation. IEGs Fos and Arc connect to activity-dependent enhancers via singular short-range loops that form within 20 min after stimulation, prior to peak messenger RNA levels. By contrast, the SRG Bdnf engages in both pre-existing and activity-inducible loops that form within 1-6 h. We also show that common single-nucleotide variants that are associated with autism and schizophrenia are colocalized with distinct classes of activity-dependent, looped enhancers. Our data link architectural complexity to transcriptional kinetics and reveal the rapid timescale by which higher-order chromatin architecture reconfigures during neuronal stimulation.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Expressão Gênica/fisiologia , Genoma/genética , Neurônios/fisiologia , Animais , Bicuculina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Montagem e Desmontagem da Cromatina/genética , Proteínas do Citoesqueleto/fisiologia , Genoma/efeitos dos fármacos , Humanos , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/fisiologia , Tetrodotoxina/farmacologia , Fatores de Tempo
6.
Nat Genet ; 52(1): 8-16, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31925403

RESUMO

Genomes across a wide range of eukaryotic organisms fold into higher-order chromatin domains. Topologically associating domains (TADs) were originally discovered empirically in low-resolution Hi-C heat maps representing ensemble average interaction frequencies from millions of cells. Here, we discuss recent advances in high-resolution Hi-C, single-cell imaging experiments, and functional genetic studies, which provide an increasingly complex view of the genome's hierarchical structure-function relationship. On the basis of these new findings, we update the definitions of distinct classes of chromatin domains according to emerging knowledge of their structural, mechanistic and functional properties.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica , Genoma , Transcrição Gênica , Animais , Compartimento Celular , Humanos , Modelos Biológicos
7.
Nat Methods ; 16(7): 633-639, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235883

RESUMO

Mammalian genomes are folded into tens of thousands of long-range looping interactions. The cause-and-effect relationship between looping and genome function is poorly understood, and the extent to which loops are dynamic on short time scales remains an unanswered question. Here, we engineer a new class of synthetic architectural proteins for directed rearrangement of the three-dimensional genome using blue light. We target our light-activated-dynamic-looping (LADL) system to two genomic anchors with CRISPR guide RNAs and induce their spatial colocalization via light-induced heterodimerization of cryptochrome 2 and a dCas9-CIBN fusion protein. We apply LADL to redirect a stretch enhancer (SE) away from its endogenous Klf4 target gene and to the Zfp462 promoter. Using single-molecule RNA-FISH, we demonstrate that de novo formation of the Zfp462-SE loop correlates with a modest increase in Zfp462 expression. LADL facilitates colocalization of genomic loci without exogenous chemical cofactors and will enable future efforts to engineer reversible and oscillatory loops on short time scales.


Assuntos
Regulação da Expressão Gênica , Engenharia de Proteínas , Animais , Proteínas de Transporte/genética , Células Cultivadas , Proteínas de Ligação a DNA , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Luz , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética
8.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30173918

RESUMO

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Assuntos
Cromatina/genética , Repetições de Microssatélites/fisiologia , Expansão das Repetições de Trinucleotídeos/fisiologia , Adulto , Encéfalo/citologia , Encéfalo/patologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/fisiologia , Linhagem Celular , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Ilhas de CpG/genética , Ilhas de CpG/fisiologia , DNA/genética , Doença/etiologia , Doença/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Genoma Humano/genética , Humanos , Masculino , Repetições de Microssatélites/genética , Expansão das Repetições de Trinucleotídeos/genética
9.
Methods ; 142: 39-46, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29772275

RESUMO

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs, and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C can generate genome-wide maps of looping interactions but is intractable for high-throughput comparison of loops across multiple conditions due to the enormous number of reads (>6 Billion) required per library. Here, we describe 5C-ID, a new version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a double alternating primer design. We demonstrate that 5C-ID produces higher-resolution 3D genome folding maps with reduced spatial noise using markedly lower cell numbers than canonical 5C. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos/genética , Primers do DNA/genética , Genoma/genética , Conformação de Ácido Nucleico , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Cromossomos/química , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
10.
Neurobiol Dis ; 110: 218-230, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29113829

RESUMO

The selective vulnerability of motor neurons in amyotrophic lateral sclerosis (ALS) is evident by sparing of a few subpopulations during this fast progressing and debilitating degenerative disease. By studying the gene expression profile of resilient vs. vulnerable motor neuron populations we can gain insight in what biomolecules and pathways may contribute to the resilience and vulnerability. Several genes have been found to be differentially expressed in the vulnerable motor neurons of the cervical spinal cord as compared to the spared motor neurons in CNIII/IV. One gene that is differentially expressed and present at higher levels in less vulnerable motor neurons is insulin-like growth factor II (IGF-II). The motor neuron protective effect of IGF-II has been demonstrated both in vitro and in SOD1 transgenic mice. Here, we have screened a library of small molecule compounds and identified inducers of IGF-II mRNA and protein expression. Several identified compounds significantly protected motor neurons from glutamate excitotoxicity in vitro. One of the compounds, vardenafil, resulted in a complete motor neuron protection, an effect that was reversed by blocking receptors of IGF-II. When administered to naïve rats vardenafil was present in the cerebrospinal fluid and increased IGF-II mRNA expression in the spinal cord. When administered to SOD1 transgenic mice, there was a significant delay in motor symptom onset and prolonged survival. Vardenafil also increased IGF-II mRNA and protein levels in motor neurons derived from healthy subject and ALS patient iPSCs, activated a human IGF-II promoter and improved survival of ALS-patient derived motor neurons in culture. Our findings suggest that modulation of genes differentially expressed in vulnerable and resilient motor neurons may be a useful therapeutic approach for motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Fator de Crescimento Insulin-Like II/biossíntese , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Dicloridrato de Vardenafila/farmacologia , Animais , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Crescimento Insulin-Like II/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley
11.
Genome Res ; 27(7): 1139-1152, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28536180

RESUMO

CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Transcrição YY1/metabolismo , Linhagem Celular , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Neurais/citologia
12.
Wiley Interdiscip Rev Syst Biol Med ; 8(4): 286-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27265842

RESUMO

CRISPR/Cas9 genome editing studies have recently shed new light into the causal link between the linear DNA sequence and 3-D chromatin architecture. Here we describe current models for the folding of genomes into a nested hierarchy of higher-order structures and discuss new insights into the organizing principles governing genome folding at each length scale. WIREs Syst Biol Med 2016, 8:286-299. doi: 10.1002/wsbm.1338 For further resources related to this article, please visit the WIREs website.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Fator de Ligação a CCCTC , Cromatina/química , Cromatina/metabolismo , Cromossomos/química , Cromossomos/genética , Cromossomos/metabolismo , Humanos , Conformação de Ácido Nucleico , Proteínas Repressoras/metabolismo
13.
Cell Stem Cell ; 18(5): 611-24, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27152443

RESUMO

Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression.


Assuntos
Reprogramação Celular/genética , Genoma , Conformação de Ácido Nucleico , Animais , Fator de Ligação a CCCTC , Linhagem da Célula/genética , Cromatina/química , Células Clonais , Elementos Facilitadores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo
14.
Neurobiol Dis ; 82: 495-503, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26392287

RESUMO

Diminished lysosomal function can lead to abnormal cellular accumulation of specific proteins, including α-synuclein, contributing to disease pathogenesis of vulnerable neurons in Parkinson's disease (PD) and related α-synucleinopathies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase (GCase), and mutations in GBA1 are a prominent genetic risk factor for PD. Previous studies showed that in sporadic PD, and in normal aging, GCase brain activity is reduced and levels of corresponding glycolipid substrates are increased. The present study tested whether increasing GCase through AAV-GBA1 intra-cerebral gene delivery in two PD rodent models would reduce the accumulation of α-synuclein and protect midbrain dopamine neurons from α-synuclein-mediated neuronal damage. In the first model, transgenic mice overexpressing wildtype α-synuclein throughout the brain (ASO mice) were used, and in the second model, a rat model of selective dopamine neuron degeneration was induced by AAV-A53T mutant α-synuclein. In ASO mice, intra-cerebral AAV-GBA1 injections into several brain regions increased GCase activity and reduced the accumulation of α-synuclein in the substantia nigra and striatum. In rats, co-injection of AAV-GBA1 with AAV-A53T α-synuclein into the substantia nigra prevented α-synuclein-mediated degeneration of nigrostriatal dopamine neurons by 6 months. These neuroprotective effects were associated with altered protein expression of markers of autophagy. These experiments demonstrate, for the first time, the neuroprotective effects of increasing GCase against dopaminergic neuron degeneration, and support the development of therapeutics targeting GCase or other lysosomal genes to improve neuronal handling of α-synuclein.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Terapia Genética/métodos , Glucosilceramidase/genética , Mesencéfalo/enzimologia , Doenças Neurodegenerativas/terapia , alfa-Sinucleína/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Vetores Genéticos , Glucosilceramidase/metabolismo , Humanos , Masculino , Mesencéfalo/patologia , Camundongos Transgênicos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Ratos Sprague-Dawley , alfa-Sinucleína/genética
15.
Antioxid Redox Signal ; 23(6): 550-64, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26094487

RESUMO

AIMS: Loss-of-function mutations in GBA1, which cause the autosomal recessive lysosomal storage disease, Gaucher disease (GD), are also a key genetic risk factor for the α-synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase and reductions in this enzyme result in the accumulation of the glycolipid substrates glucosylceramide and glucosylsphingosine. Deficits in autophagy and lysosomal degradation pathways likely contribute to the pathological accumulation of α-synuclein in PD. In this report we used conduritol-ß-epoxide (CBE), a potent selective irreversible competitive inhibitor of glucocerebrosidase, to model reduced glucocerebrosidase activity in vivo, and tested whether sustained glucocerebrosidase inhibition in mice could induce neuropathological abnormalities including α-synucleinopathy, and neurodegeneration. RESULTS: Our data demonstrate that daily systemic CBE treatment over 28 days caused accumulation of insoluble α-synuclein aggregates in the substantia nigra, and altered levels of proteins involved in the autophagy lysosomal system. These neuropathological changes were paralleled by widespread neuroinflammation, upregulation of complement C1q, abnormalities in synaptic, axonal transport and cytoskeletal proteins, and neurodegeneration. INNOVATION: A reduction in brain GCase activity has been linked to sporadic PD and normal aging, and may contribute to the susceptibility of vulnerable neurons to degeneration. This report demonstrates that systemic reduction of GCase activity using chemical inhibition, leads to neuropathological changes in the brain reminiscent of α-synucleinopathy. CONCLUSIONS: These data reveal a link between reduced glucocerebrosidase and the development of α-synucleinopathy and pathophysiological abnormalities in mice, and support the development of GCase therapeutics to reduce α-synucleinopathy in PD and related disorders.


Assuntos
Complemento C1q/metabolismo , Glucosilceramidase/antagonistas & inibidores , Inositol/análogos & derivados , Microglia/fisiologia , Agregação Patológica de Proteínas/enzimologia , alfa-Sinucleína/metabolismo , Animais , Autofagia , Transporte Axonal , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ativação do Complemento , Glucosilceramidase/metabolismo , Inositol/farmacologia , Masculino , Camundongos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/enzimologia , Agregação Patológica de Proteínas/induzido quimicamente , Proteínas/metabolismo , Transmissão Sináptica
16.
PLoS One ; 10(3): e0121072, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815475

RESUMO

Dopaminergic neurons in the substantia nigra pars compacta (SNpc) are characterized by the expression of genes required for dopamine synthesis, handling and reuptake and the expression of these genes is largely controlled by nuclear receptor related 1 (Nurr1). Nurr1 is also expressed in astrocytes and microglia where it functions to mitigate the release of proinflammatory cytokines and neurotoxic factors. Given that Parkinson's disease (PD) pathogenesis has been linked to both loss of Nurr1 expression in the SNpc and inflammation, increasing levels of Nurr1 maybe a promising therapeutic strategy. In this study a novel Nurr1 agonist, SA00025, was tested for both its efficiency to induce the transcription of dopaminergic target genes in vivo and prevent dopaminergic neuron degeneration in an inflammation exacerbated 6-OHDA-lesion model of PD. SA00025 (30mg/kg p.o.) entered the brain and modulated the expression of the dopaminergic phenotype genes TH, VMAT, DAT, AADC and the GDNF receptor gene c-Ret in the SN of naive rats. Daily gavage treatment with SA00025 (30mg/kg) for 32 days also induced partial neuroprotection of dopaminergic neurons and fibers in rats administered a priming injection of polyinosinic-polycytidylic acid (poly(I:C) and subsequent injection of 6-OHDA. The neuroprotective effects of SA00025 in this dopamine neuron degeneration model were associated with changes in microglial morphology indicative of a resting state and a decrease in microglial specific IBA-1 staining intensity in the SNpc. Astrocyte specific GFAP staining intensity and IL-6 levels were also reduced. We conclude that Nurr1 agonist treatment causes neuroprotective and anti-inflammatory effects in an inflammation exacerbated 6-OHDA lesion model of PD.


Assuntos
Dopamina/biossíntese , Imidazóis/administração & dosagem , Inflamação/tratamento farmacológico , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Doença de Parkinson Secundária/tratamento farmacológico , Piridinas/administração & dosagem , Receptor 3 Toll-Like/biossíntese , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Neuroproteção/efeitos dos fármacos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Oxidopamina/toxicidade , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Poli I-C/administração & dosagem , RNA de Cadeia Dupla , Ratos , Receptor 3 Toll-Like/genética
17.
Exp Neurol ; 261: 217-29, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24907400

RESUMO

Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (<10µM), or large inclusions (≥10µM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12 and 48h post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS.


Assuntos
Estresse Oxidativo/genética , Periferinas/genética , Agregação Patológica de Proteínas/genética , Isoformas de Proteínas/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/farmacologia , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Periferinas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção , Ubiquitina/metabolismo , Vimentina/metabolismo
18.
Neurosci Lett ; 576: 73-8, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24882721

RESUMO

Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system.


Assuntos
Adenoviridae/genética , Encéfalo/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Sinapsinas/genética , Transgenes , Animais , Animais Recém-Nascidos , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Injeções Intraventriculares , Camundongos , Regiões Promotoras Genéticas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA