Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 924, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042895

RESUMO

More accurate global volumetric estimations of shallow-water reef deposits are needed to better inform climate and carbon cycle models. Using recently acquired datasets and International Ocean Discovery Program (IODP) Expedition 325 cores, we calculated shallow-water CaCO3 volumetrics and mass for the Great Barrier Reef region and extrapolated these results globally. In our estimates, we include deposits that have been neglected in global carbonate budgets: Holocene Halimeda bioherms located on the shelf, and postglacial pre-Holocene (now) drowned coral reefs located on the shelf edge. Our results show that in the Great Barrier Reef alone, these drowned reef deposits represent ca. 135 Gt CaCO3, comparatively representing 16-20% of the younger Holocene reef deposits. Globally, under plausible assumptions, we estimate the presence of ca. 8100 Gt CaCO3 of Holocene reef deposits, ca. 1500 Gt CaCO3 of drowned reef deposits and ca. 590 Gt CaCO3 of Halimeda shelf bioherms. Significantly, we found that in our scenarios the periods of pronounced reefal mass accumulation broadly encompass the occurrence of the Younger Dryas and periods of CO2 surge (14.9-14.4 ka, 13.0-11.5 ka) observed in Antarctic ice cores. Our estimations are consistent with reef accretion episodes inferred from previous global carbon cycle models and with the chronology from reef cores from the shelf edge of the Great Barrier Reef.

3.
Zootaxa ; 5213(1): 1-35, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37044955

RESUMO

We describe five new species of black corals from the Great Barrier Reef and Coral Sea, collected at depths ranging from 14 to 789 m: two in the family Antipathidae (Antipathes falkorae sp. nov. and Antipathes morrisi sp. nov.), two in the family Aphanipathidae (Aphanipathes flailum sp. nov. and Rhipidipathes helae sp. nov.), and one in the family Cladopathidae (Hexapathes bikofskii sp. nov.). We also present a phylogeny of 80 black corals reconstructed from a target capture dataset of ultraconserved elements and exons, to show the systematic relationships among new and nominal species. This phylogeny also represents a backbone for future species descriptions and research into the evolutionary history of the Antipatharia.


Assuntos
Antozoários , Animais , Antozoários/genética , Filogenia , Austrália , Recifes de Corais
4.
Nat Hum Behav ; 5(10): 1303-1313, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33927367

RESUMO

Archaeological data and demographic modelling suggest that the peopling of Sahul required substantial populations, occurred rapidly within a few thousand years and encompassed environments ranging from hyper-arid deserts to temperate uplands and tropical rainforests. How this migration occurred and how humans responded to the physical environments they encountered have, however, remained largely speculative. By constructing a high-resolution digital elevation model for Sahul and coupling it with fine-scale viewshed analysis of landscape prominence, least-cost pedestrian travel modelling and high-performance computing, we create over 125 billion potential migratory pathways, whereby the most parsimonious routes traversed emerge. Our analysis revealed several major pathways-superhighways-transecting the continent, that we evaluated using archaeological data. These results suggest that the earliest Australian ancestors adopted a set of fundamental rules shaped by physiological capacity, attraction to visually prominent landscape features and freshwater distribution to maximize survival, even without previous experience of the landscapes they encountered.


Assuntos
Migração Humana/tendências , Dinâmica Populacional/tendências , Antropologia Física , Arqueologia , Austrália , Indicadores Ambientais , Geografia , Humanos , Sociobiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA