Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(2): e0112321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668742

RESUMO

The grass grub endemic to New Zealand, Costelytra giveni (Coleoptera: Scarabaeidae), and the manuka beetle, Pyronota festiva and P. setosa (Coleoptera: Scarabaeidae), are prevalent pest species. Through assessment of bacterial strains isolated from diseased cadavers of these insect species, 19 insect-active Serratia proteamaculans variants and a single Serratia entomophila strain were isolated. When independently bioassayed, these isolates differed in host range, the rate of disease progression, and 12-day mortality rates, which ranged from 60 to 100% of the challenged larvae. A Pyronota spp.-derived S. proteamaculans isolate caused a transient disease phenotype in challenged C. giveni larvae, whereby larvae appeared diseased before recovering to a healthy state. Genome sequence analysis revealed that all but two of the sequenced isolates contained a variant of the S. entomophila amber-disease-associated plasmid, pADAP. Each isolate also encoded one of seven distinct members of the toxin complex (Tc) family of insect-active toxins, five of which are newly described, or a member of the extracellular contractile injection (eCIS) machine family, with a new AfpX variant designated SpF. Targeted mutagenesis of each of the predicted Tc- or eCIS-encoding regions abolished or attenuated pathogenicity. Host-range testing showed that several of the S. proteamaculans Tc-encoding isolates affected both Pyronota and C. giveni species, with other isolates specific for either Pyronota spp. or C. giveni. The isolation of several distinct host-specific pathotypes of Serratia spp. may reflect pathogen-host speciation. IMPORTANCE New pathotypes of the insect pathogen Serratia, each with differing virulence attributes and host specificity toward larvae of the New Zealand manuka beetle and grass grub, have been identified. All of the Serratia proteamaculans isolates contained one of seven different insect-active toxin clusters or one of three eCIS variants. The diversity of these Serratia-encoded virulence clusters, resulting in differences in larval disease progression and host specificity in endemic scarab larvae, suggests speciation of these pathogens with their insect hosts. The differing virulence properties of these Serratia species may affect their potential infectivity and distribution among the insect populations. Based on their differing geographic isolation and pathotypes, several of these Serratia isolates, including the manuka beetle-active isolates, are likely to be more effective biopesticides in specific environments or could be used in combination for greater effect.


Assuntos
Toxinas Bacterianas/metabolismo , Agentes de Controle Biológico/metabolismo , Besouros/microbiologia , Serratia/patogenicidade , Animais , Toxinas Bacterianas/genética , Genoma Bacteriano/genética , Especificidade de Hospedeiro/genética , Larva/microbiologia , Nova Zelândia , Serratia/genética , Serratia/metabolismo , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
2.
Pest Manag Sci ; 76(1): 350-359, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31207111

RESUMO

BACKGROUND: Porina is the common name for moths and larvae of the genus Wiseana (Lepidoptera: Hepialidae), some of which are significant pasture pests in New Zealand. Because of environmental concerns and the non-target effects of insecticide control measures, biological alternatives for the control of insect pests such as porina are required. RESULTS: Using a food preference assay and time-lapse photography, a range of low-cost food ingredients were assessed for their palatability to porina larvae. Lead candidates were combined into extruded bait variants, allowing assessment of their palatability to porina larvae. A composite bait consisting of palatable ingredients was developed, into which the porina-active entomopathogen Yersinia entomophaga was incorporated. A 7 day minimum median lethal dose of approximately 6.0 × ±1 × 106 Y. entomophaga cells per 0.02 g of bait was defined. Field trials showed that the mean change in larval density over time differed between treatments, with Y. entomophaga bait applied at 87 kg ha-1 resulting in a mean 65% reduction in larval density relative to the control plots, and diflubenzuron treatment resulting in a mean 77% reduction relative to the control plots. The mean dry matter yields over the course of the trial were highest for diflubenzuron (5029 kg ha-1 ), followed by the Y. entomophaga (4783 kg ha-1 ) and control (4673 kg ha-1 ) treatments. CONCLUSIONS: The bacterium Y. entomophaga applied as a composite bait offers an environmentally sustainable approach for porina pest control. © 2019 Society of Chemical Industry.


Assuntos
Mariposas , Yersinia , Animais , Pradaria , Larva , Nova Zelândia
3.
J Invertebr Pathol ; 162: 19-25, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30735764

RESUMO

The application of the biocontrol bacterium Yersinia entomophaga as a foliar spray was assessed for its efficacy against larvae of the diamondback moth, Plutella xylostella. The bacterium was applied as either a broth suspension, or as a biopolymer-based gel foliar spray and compared with commercial insecticides Dipel (Bacillus thuringiensis) and Spinosad. The performance of Y. entomophaga was comparable with that of Dipel. The gel-based formulation extended leaf persistence over that of the basic broth culture spray, while also providing higher initial foliar deposition rates. The bacterium was found to multiply within the P. xylostella larvae to 5.8 × 105 cells per larva, while the median lethal dose (LD50) was determined to be 2.69 × 103 cells per larva. Importantly, B. thuringiensis Cry1A-resistant, Cry1C-resistant, indoxacarb/pyrethroid-resistant, and Spinosad-resistant P. xylostella larvae were susceptible to Y. entomophaga.


Assuntos
Agentes de Controle Biológico , Mariposas/microbiologia , Controle Biológico de Vetores/métodos , Yersinia , Animais , Controle de Insetos/métodos , Resistência a Inseticidas , Larva/microbiologia , Mortalidade , Yersinia/crescimento & desenvolvimento , Yersinia/patogenicidade
4.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549100

RESUMO

A highly virulent Serratia proteamaculans strain, AGR96X, exhibiting specific pathogenicity against larvae of the New Zealand grass grub (Costelytra giveni; Coleoptera: Scarabaeidae) and the New Zealand manuka beetle (Pyronota festiva and P. setosa; Coleoptera: Scarabaeidae), was isolated from a diseased grass grub larva. A 12-day median lethal dose of 4.89 × 103 ± 0.92 × 103 cells per grass grub larva was defined for AGR96X, and death occurred within 5 to 12 days following the ingestion of a high bacterial dose. During the infection period, the bacterium rapidly multiplied within the insect host and invaded the hemocoel, leading to a mean bacterial load of 8.2 × 109 cells per larva at 6 days postingestion. Genome sequencing of strain AGR96X revealed the presence of a variant of the Serratia entomophila antifeeding prophage (Afp), a tailocin designated AfpX. Unlike Afp, AfpX contains two Afp16 tail-length termination protein orthologs and two putative toxin components. A 37-kb DNA fragment encoding the AfpX-associated region was cloned, transformed into Escherichia coli, and fed to C. giveni and Pyronota larvae, causing mortality. In addition, the deletion of the afpX15 putative chaperone component abolished the virulence of AGR96X. Unlike S. entomophila Afp, the AfpX tailocin could be induced by mitomycin C. Transmission electron microscopy analysis revealed the presence of Afp-like particles of various lengths, and when the purified AfpX tailocin was fed to grass grub or manuka beetle larvae, they underwent phenotypic changes similar to those of larvae fed AGR96X.IMPORTANCESerratia proteamaculans strain AGR96X shows dual activity against larvae of endemic New Zealand pasture pests, the grass grub (Costelytra giveni) and the manuka beetle (Pyronota spp.). Unlike Serratia entomophila, the causal agent of amber disease, which takes 3 to 4 months to kill grass grub larvae, AGR96X causes mortality within 5 to 12 days of ingestion and invades the insect hemocoel. AGR96X produces a unique variant of the S. entomophila antifeeding prophage (Afp), a cell-free phage-like entity that is proposed to deliver protein toxins to the grass grub target site, causing a cessation of feeding activity. Unlike other Afp variants, AGR96X Afp, named AfpX, contains two tail-length termination proteins, resulting in greater variability in the AfpX length. AfpX shows dual activity against both grass grub and manuka beetle larvae. AGR96X is a viable alternative to S. entomophila for pest control in New Zealand pasture systems.


Assuntos
Besouros/microbiologia , Besouros/fisiologia , Controle de Insetos/métodos , Prófagos/fisiologia , Serratia/virologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Alimentar , Larva/microbiologia , Larva/fisiologia , Nova Zelândia , Filogenia , Prófagos/genética , Prófagos/isolamento & purificação , Alinhamento de Sequência , Serratia/classificação , Serratia/genética , Serratia/patogenicidade , Virulência
5.
Oncotarget ; 8(22): 35592-35608, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28423685

RESUMO

Advance-stage breast carcinomas include significant amounts of fibroblasts and infiltrating immune cells which have been implicated in tumor growth, recurrence, and response to therapy. The present study investigated the contribution of fibroblasts to tumor growth using direct tumor-fibroblast co-cultures and tumor xenograft models. Our findings revealed that fibroblasts enhance breast carcinoma growth by promoting the tumor vasculature via the MMP9-dependent mechanism. In tumor-fibroblast co-cultures, fibroblasts increased expression of TGF-ß, TNF, and IL-1ß cytokines in tumor cells. These cytokines cooperatively induced expression of matrix metalloproteinase MMP9 in tumor cells. Knockdown of MMP9 by shRNA significantly reduced tumor vascularization induced by fibroblasts. Mechanistically, our findings argue that expression of MMP9 in tumor cellsis regulated by crosstalk of TGF-ß with TNF and/or IL-1ß cytokines. The mechanism of this cooperative response did not involve cross-activation of the canonical signaling pathways as TGF-ß did not activate RELA/p65 signaling, while TNF did not affect SMAD signaling. Instead, TGF-ß and TNF cytokines co-stimulated MAP kinases and expression of JUN and JUNB, AP1 transcription factor subunits, which together with RELA/p65 were essential for the regulation of MMP9. Depletion of JUN and JUNB or RELA in tumor cells blocked the cooperative induction of MMP9 by the cytokines. Thus, our studies uncovered a previously unappreciated role of tumor-fibroblast interactions in the stimulation of tumor angiogenesis, and an essential role of the MAPK-AP1 axis in the cooperative up-regulation of the angiogenic driver MMP9 by cytokine crosstalk.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Citocinas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Patológica/metabolismo , Animais , Apoptose , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Ratos , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Toxins (Basel) ; 8(5)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187466

RESUMO

Here we report the draft genome of Yersinia entomophaga type strain MH96T. The genome shows 93.8% nucleotide sequence identity to that of Yersinia nurmii type strain APN3a-cT, and comprises a single chromosome of approximately 4,275,531 bp. In silico analysis identified that, in addition to the previously documented Y. entomophaga Yen-TC gene cluster, the genome encodes a diverse array of toxins, including two type III secretion systems, and five rhs-associated gene clusters. As well as these multicomponent systems, several orthologs of known insect toxins, such as VIP2 toxin and the binary toxin PirAB, and distant orthologs of some mammalian toxins, including repeats-in-toxin, a cytolethal distending toxin, hemolysin-like genes and an adenylate cyclase were identified. The genome also contains a large number of hypothetical proteins and orthologs of known effector proteins, such as LopT, as well as genes encoding a wide range of proteolytic determinants, including metalloproteases and pathogen fitness determinants, such as genes involved in iron metabolism. The bioinformatic data derived from the current in silico analysis, along with previous information on the pathobiology of Y. entomophaga against its insect hosts, suggests that a number of these virulence systems are required for survival in the hemocoel and incapacitation of the insect host.


Assuntos
Genoma Bacteriano , Yersinia/genética , Proteínas de Bactérias/genética , Biologia Computacional , Simulação por Computador , DNA Bacteriano/análise , Virulência/genética
7.
Archaea ; 2015: 828693, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483615

RESUMO

Pseudomurein endoisopeptidases cause lysis of the cell walls of methanogens by cleaving the isopeptide bond Ala-ε-Lys in the peptide chain of pseudomurein. PeiW and PeiP are two thermostable pseudomurein endoisopeptidases encoded by phage ΨM100 of Methanothermobacter wolfei and phages ΨM1 and ΨM2 of Methanothermobacter marburgensis, respectively. A continuous assay using synthetic peptide substrates was developed and used in the biochemical characterisation of recombinant PeiW and PeiP. The advantages of these synthetic peptide substrates over natural substrates are sensitivity, high purity, and characterisation and the fact that they are more easily obtained than natural substrates. In the presence of a reducing agent, purified PeiW and PeiP each showed similar activity under aerobic and anaerobic conditions. Both enzymes required a divalent metal for activity and showed greater thermostability in the presence of Ca(2+). PeiW and PeiP involve a cysteine residue in catalysis and have a monomeric native conformation. The kinetic parameters, K(M) and k(cat), were determined, and the ε-isopeptide bond between alanine and lysine was confirmed as the bond lysed by these enzymes in pseudomurein. The new assay may have wider applications for the general study of peptidases and the identification of specific methanogens susceptible to lysis by specific pseudomurein endoisopeptidases.


Assuntos
Bacteriófagos/enzimologia , Endopeptidases/metabolismo , Peptídeos/metabolismo , Cátions Bivalentes/metabolismo , Coenzimas/metabolismo , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Estabilidade Enzimática , Cinética , Metais/metabolismo , Methanobacteriaceae/virologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
8.
Appl Environ Microbiol ; 81(18): 6404-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162867

RESUMO

The bacterium Yersinia entomophaga is pathogenic to a range of insect species, with death typically occurring within 2 to 5 days of ingestion. Per os challenge of larvae of the greater wax moth (Galleria mellonella) confirmed that Y. entomophaga was virulent when fed to larvae held at 25°C but was avirulent when fed to larvae maintained at 37°C. At 25°C, a dose of ~4 × 10(7) CFU per larva of a Y. entomophaga toxin complex (Yen-TC) deletion derivative, the Y. entomophaga ΔTC variant, resulted in 27% mortality. This low level of activity was restored to near-wild-type levels by augmentation of the diet with a sublethal dose of purified Yen-TC. Intrahemocoelic injection of ~3 Y. entomophaga or Y. entomophaga ΔTC cells per larva gave a 4-day median lethal dose, with similar levels of mortality observed at both 25 and 37°C. Following intrahemocoelic injection of a Yen-TC YenA1 green fluorescent protein fusion strain into larvae maintained at 25°C, the bacteria did not fluoresce until the population density reached 2 × 10(7) CFU ml(-1) of hemolymph. The observed cells also took an irregular form. When the larvae were maintained at 37°C, the cells were small and the observed fluorescence was sporadic and weak, being more consistent at a population density of ~3 × 10(9) CFU ml(-1) of hemolymph. These findings provide further understanding of the pathobiology of Y. entomophaga in insects, showing that the bacterium gains direct access to the hemocoelic cavity, from where it rapidly multiplies to cause disease.


Assuntos
Hemolinfa/microbiologia , Larva/microbiologia , Mariposas/microbiologia , Yersinia/fisiologia , Animais , Larva/fisiologia , Larva/ultraestrutura , Mutação , Temperatura , Virulência , Yersinia/genética
9.
Proteins ; 81(11): 2064-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23873651

RESUMO

Methenyltetrahydromethanopterin cyclohydrolase (Mch) is involved in the methanogenesis pathway of archaea as a C1 unit carrier where N(5) -formyl-tetrahydromethanopterin is converted to methenyl-tetrahydromethanopterin. Mch from Methanobrevibacter ruminantium was cloned, purified, crystallized and its crystal structure solved at 1.37 Å resolution. A biologically active trimer, the enzyme is composed of two domains including an N-terminal domain of six α-helices encompassing a series of four ß-sheets and a predominantly anti-parallel ß-sheet at the C-terminus flanked on one side by α-helices. Sequence and structural alignments have helped identify residues involved in substrate binding and trimer formation.


Assuntos
Aminoidrolases/química , Methanobrevibacter/enzimologia , Proteínas Arqueais/química , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA