Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 28(9): 2443-2454.e4, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461657

RESUMO

In the ovary, follicular growth and maturation are complicated processes that involve a series of morphological and physiological changes in oocytes and somatic cells leading to ovulation and luteinization, essential processes for fertility. Given the complexity of ovulation, characterization of genome-wide regulatory elements is essential to understand the mechanisms governing the expression of specific genes in the rapidly differentiating follicle. We therefore employed a systems biology approach to determine global transcriptional mechanisms during the early stages of the ovulatory process. We demonstrate that, following the hormonal signal that initiates ovulation, granulosa cells undergo major modification of distal regulatory elements, which coincides with cistrome reprogramming of the indispensable orphan nuclear receptor liver receptor homolog-1 (LRH-1). This cistromic reorganization correlates with the extensive changes in gene expression in granulosa cells leading to ovulation. Together, our study yields a highly detailed transcriptional map delineating ovarian cell differentiation during the initiation of ovulation.


Assuntos
Montagem e Desmontagem da Cromatina , Folículo Ovariano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Motivos de Nucleotídeos , Folículo Ovariano/citologia , Ovulação
2.
J Immunol ; 194(10): 4940-50, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25876761

RESUMO

Glucocorticoid (GC)-induced leucine zipper (GILZ) has been shown to mediate or mimic several actions of GC. This study assessed the role of GILZ in self-resolving and GC-induced resolution of neutrophilic inflammation induced by LPS in mice. GILZ expression was increased during the resolution phase of LPS-induced pleurisy, especially in macrophages with resolving phenotypes. Pretreating LPS-injected mice with trans-activator of transcription peptide (TAT)-GILZ, a cell-permeable GILZ fusion protein, shortened resolution intervals and improved resolution indices. Therapeutic administration of TAT-GILZ induced inflammation resolution, decreased cytokine levels, and promoted caspase-dependent neutrophil apoptosis. TAT-GILZ also modulated the activation of the survival-controlling proteins ERK1/2, NF-κB and Mcl-1. GILZ deficiency was associated with an early increase of annexin A1 (AnxA1) and did not modify the course of neutrophil influx induced by LPS. Dexamethasone treatment resolved inflammation and induced GILZ expression that was dependent on AnxA1. Dexamethasone-induced resolution was not altered in GILZ(-/-) mice due to compensatory expression and action of AnxA1. Our results show that therapeutic administration of GILZ efficiently induces a proapoptotic program that promotes resolution of neutrophilic inflammation induced by LPS. Alternatively, a lack of endogenous GILZ during the resolution of inflammation is compensated by AnxA1 overexpression.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Pleurisia/imunologia , Fatores de Transcrição/imunologia , Animais , Anexina A1/imunologia , Apoptose/imunologia , Western Blotting , Movimento Celular , Modelos Animais de Doenças , Citometria de Fluxo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real
3.
PLoS One ; 10(3): e0119387, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803847

RESUMO

Mitogen-activated protein kinase 3/1 (Mapk3/1) pathway is critical for LH signal transduction during ovulation. However, the mechanisms remain incompletely understood. We hypothesized that Mapk pathway regulates ovulation through transcriptional regulation of ovulatory genes. To test this hypothesis we used immature mice superovulated with equine and human chorionic gonadotropins (eCG and hCG) and PD0325901, to inhibit hCG-induced Mapk3/1 activity. Mice received either the inhibitor PD0325901 (25 µg/g, i.p.) or vehicle at 2h before hCG stimulation. Administration of the inhibitor abolished Mapk3/1 phosphorylation in granulosa cells. While vehicle-treated mice ovulated normally, there were no ovulations in inhibitor-treated mice. First, we analyzed gene expression in granulosa cells at 0h, 1h and 4h post-hCG. There was expected hCG-driven increase in mRNA abundance of many ovulation-related genes including Ptgs2 in vehicle-treated granulosa cells, but not (P<0.05) in inhibitor-treated group. There was also reduced mRNA and protein abundance of the transcription factor, early growth response 1 (Egr1) in inhibitor-treated granulosa cells. We then used GRMO2 cell-line to test if Egr1 is recruited to promoter of Ptgs2 followed by chromatin immunoprecipitation with either Egr1 or control antibody. Enrichment of the promoter regions in immunoprecipitants of Egr1 antibody indicated that Egr1 binds to the Ptgs2 promoter. We then knocked down Egr1 expression in mouse primary granulosa cells using siRNA technology. Treatment with Egr1-siRNA inhibited Egr1 transcript accumulation, which was associated with reduced expression of Ptgs2 when compared to control-siRNA treated granulosa cells. These data demonstrate that transient inhibition of LH-stimulated MAPK3/1 activity abrogates ovulation in mice. We conclude that Mapk3/1 regulates ovulation, at least in part, through Egr1 and its target gene, Ptgs2 in granulosa cells of ovulating follicles in mice.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Ovulação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Benzamidas/farmacologia , Ciclo-Oxigenase 2/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Gonadotropinas/farmacologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/enzimologia , Cavalos , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/enzimologia , Ovulação/fisiologia , Cultura Primária de Células , Superovulação/efeitos dos fármacos
4.
Arthritis Rheumatol ; 66(8): 2059-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24782327

RESUMO

OBJECTIVE: Glucocorticoids remain a mainstay in the treatment of rheumatoid arthritis (RA). Dose-dependent adverse effects highlight the need for therapies that regulate glucocorticoid sensitivity to enable dosage reduction. Macrophage migration inhibitory factor (MIF) is a proinflammatory protein that has been implicated in the pathogenesis of RA; it impairs glucocorticoid sensitivity via MAPK phosphatase 1 (MKP-1) inhibition. The intracellular protein glucocorticoid-induced leucine zipper (GILZ) mimics the effects of glucocorticoids in models of RA, but whether it represents a target for the modulation of glucocorticoid sensitivity remains unknown. We undertook this study to investigate whether GILZ is involved in the regulation of glucocorticoid sensitivity by MIF. METHODS: GILZ expression was studied in the presence and absence of MIF, and the role of GILZ in the MIF-dependent regulation of the glucocorticoid sensitivity mediator MKP-1 was studied at the level of expression and function. RESULTS: GILZ expression was significantly inhibited by endogenous MIF, both basally and during responses to glucocorticoid treatment. The effects of MIF on GILZ were dependent on the expression and Akt-induced nuclear translocation of the transcription factor FoxO3A. GILZ was shown to regulate the expression of MKP-1 and consequent MAPK phosphorylation and cytokine release. CONCLUSION: MIF exerts its effects on MKP-1 expression and MAPK activity through inhibitory effects on GILZ. These findings suggest a previously unsuspected interaction between MIF and GILZ and identify GILZ as a potential target for the therapeutic regulation of glucocorticoid sensitivity.


Assuntos
Glucocorticoides/farmacologia , Zíper de Leucina/efeitos dos fármacos , Zíper de Leucina/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Animais , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/efeitos dos fármacos , Fosfatase 1 de Especificidade Dupla/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/fisiologia
5.
J Immunol ; 191(1): 424-33, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23729444

RESUMO

Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory protein first identified in T lymphocytes. We recently observed that GILZ is highly expressed in synovial endothelial cells in rheumatoid arthritis. However, the function of GILZ in endothelial cells is unknown. To investigate the actions of GILZ in this cell type, we induced GILZ expression in HUVECs via transient transfection. GILZ overexpression significantly reduced the capacity of TNF-stimulated HUVECs to support leukocyte rolling, adhesion, and transmigration. These effects were associated with decreased expression of E-selectin, ICAM-1, CCL2, CXCL8, and IL-6. Experiments in a human microvascular endothelial cell line demonstrated that TNF-inducible NF-κB activity was significantly inhibited by overexpression of GILZ. Exogenous GILZ inhibited TNF-induced NF-κB p65 DNA binding, although this occurred in the absence of an effect on p65 nuclear translocation, indicating that the mechanism of action of exogenous GILZ in endothelial cells differs from that reported in other cell types. GILZ overexpression also inhibited TNF-induced activation of p38, ERK, and JNK MAPKs, as well as increased expression of the MAPK inhibitory phosphatase, MKP-1. In contrast, silencing endogenous GILZ in glucocorticoid-treated HUVECs did not alter their capacity to support leukocyte interactions. These data demonstrate that exogenous GILZ exerts inhibitory effects on endothelial cell adhesive function via a novel pathway involving modulation of NF-κB p65 DNA binding and MAPK activity. Induction of GILZ expression in endothelial cells may represent a novel therapeutic modality with the potential to inhibit inflammatory leukocyte recruitment.


Assuntos
Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/genética , Migração Transendotelial e Transepitelial/imunologia , Adesão Celular/genética , Adesão Celular/imunologia , Comunicação Celular/imunologia , Linhagem Celular , Inibição de Migração Celular/genética , Inibição de Migração Celular/imunologia , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Microcirculação/genética , Microcirculação/imunologia , Cultura Primária de Células , Distribuição Aleatória , Fatores de Transcrição/biossíntese , Fatores de Transcrição/fisiologia , Migração Transendotelial e Transepitelial/genética
6.
PLoS One ; 8(3): e59149, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516608

RESUMO

Spermatogonia stem cell (SSC) self-renewal and differentiation are tightly regulated processes that ensure a continued production of mature sperm throughout male adulthood. In the present study, we investigated the role of glucocorticoid-induced leucine zipper (GILZ) in maintenance of the male germline and spermatogenesis. GILZ was detectable in germ cells of wild type mice on the day of birth, suggesting a role for GILZ in prospermatogonia and SSC pool formation. Gilz KO mice were generated and adult males were azoospermic and sterile. During the first wave of spermatogenesis in Gilz KO mice, spermatogenesis arrested part way through pachytene of meiosis I. Subsequent waves resulted in a progressive depletion of germ cells through apoptosis to ultimately produce a Sertoli cell-only phenotype. Further, in contrast to wild type littermates, PLZF(+) cells were detected in the peri-luminal region of Gilz KO mice at day 6 post-natal, suggesting a defect in prospermatogonia migration in the absence of GILZ. At age 30 days, transient accumulation of PLZF(+) cells in a subset of tubules and severely compromised spermatogenesis were observed in Gilz KO mice, consistent with defective SSC differentiation. GILZ deficiency was associated with an increase in FOXO1 transcriptional activity, which leads to activation of a selective set of FOXO1 target genes, including a pro-apoptotic protein, BIM. On the other hand, no evidence of a heightened immune response was observed. Together, these results suggest that GILZ suppresses FOXO1 nuclear translocation, promotes SSC differentiation over self-renewal, and favours germ cell survival through inhibition of BIM-dependent pro-apoptotic signals. These findings provide a mechanism for the effects of GILZ on spermatogenesis and strengthen the case for GILZ being a critical molecule in the regulation of male fertility.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Animais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogênese/genética , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Arthritis Rheum ; 65(5): 1203-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23335223

RESUMO

OBJECTIVE: Glucocorticoid-induced leucine zipper (GILZ) has effects on inflammatory pathways that suggest it to be a key inhibitory regulator of the immune system, and its expression is exquisitely sensitive to induction by glucocorticoids. We undertook this study to test our hypothesis that GILZ deficiency would exacerbate experimental immune-mediated inflammation and impair the effects of glucocorticoids on inflammation and, correspondingly, that exogenous GILZ would inhibit these events. METHODS: GILZ(-/-) mice were generated using the Cre/loxP system, and responses were studied in delayed-type hypersensitivity (DTH), antigen-induced arthritis (AIA), K/BxN serum-transfer arthritis, and lipopolysaccharide (LPS)-induced cytokinemia. Therapeutic expression of GILZ via administration of recombinant adeno-associated virus expressing the GILZ gene (GILZ-rAAV) was compared to the effects of glucocorticoid in collagen-induced arthritis (CIA). RESULTS: Increased T cell proliferation and DTH were observed in GILZ(-/-) mice, but neither AIA nor K/BxN serum-transfer arthritis was affected, and GILZ deficiency did not affect LPS-induced cytokinemia. Deletion of GILZ did not impair the effects of exogenous glucocorticoids on CIA or cytokinemia. In contrast, overexpression of GILZ in joints significantly inhibited CIA, with an effect similar to that of dexamethasone. CONCLUSION: Despite effects on T cell activation, GILZ deficiency had no effect on effector pathways of arthritis and was unexpectedly redundant with effects of glucocorticoids. These findings do not support the hypothesis that GILZ is central to the actions of glucocorticoids, but the efficacy of exogenous GILZ in CIA suggests that further evaluation of GILZ in inflammatory disease is required.


Assuntos
Artrite Experimental/terapia , Hipersensibilidade Tardia/terapia , Fatores de Transcrição/genética , Adenoviridae/genética , Animais , Artrite Experimental/genética , Proliferação de Células , Dexametasona/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Marcação de Genes , Terapia Genética/métodos , Glucocorticoides/farmacologia , Hipersensibilidade Tardia/genética , Lipopolissacarídeos/farmacologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia , Fatores de Transcrição/deficiência , Transdução Genética
8.
Endocrinology ; 153(12): 5796-808, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23064015

RESUMO

Adipogenesis, the biological process by which preadipocytes differentiate into mature fat cells, is coordinated by a tightly regulated gene expression program. Indeed, it has been reported that a large number of genetic events, from fat cell-specific transcription factors expression, such as the master regulator of fat cell differentiation peroxisome proliferator-activated receptor (PPAR)γ2 to epigenetic modifications, govern the acquisition of a mature adipocyte phenotype. Here, we provide evidence that the E1A-binding protein p400 (p400) complex subunit bromo-containing protein 8 (Brd8) plays an important role in the regulation of PPARγ target genes during adipogenesis by targeting and incorporating the histone variant H2A.Z in transcriptional regulatory regions. The results reported here indicate that expression of both Brd8 and p400 increases during fat cell differentiation. In addition, small hairpin RNA-mediated knockdown of Brd8 or H2A.Z completely abrogated the ability of 3T3-L1 preadipocyte to differentiate into mature adipocyte, as evidenced by a lack of lipid accumulation. Chromatin immunoprecipitation experiments also revealed that the knockdown of Brd8 blocked the accumulation of PPARγ, p400, and RNA polymerase II and prevented the incorporation of H2A.Z at two PPARγ target genes. Taken together, these results indicate that the incorporation of the histone variant H2A.Z at the promoter regions of PPARγ target genes by p400/Brd8 is essential to allow fat cell differentiation.


Assuntos
Adipogenia/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , PPAR gama/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Imunoprecipitação da Cromatina , Epigênese Genética , Células HEK293 , Histonas/química , Humanos , Lipídeos/química , Camundongos , Fenótipo , Regiões Promotoras Genéticas
9.
Nat Rev Rheumatol ; 7(6): 340-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21556028

RESUMO

Glucocorticoids have been exploited therapeutically for more than six decades through the use of synthetic glucocorticoids as anti-inflammatory agents, and are still used in as many as 50% of patients suffering from inflammatory diseases such as rheumatoid arthritis (RA). Better understanding of the mechanisms of action of glucocorticoids could enable the development of therapies that dissociate the broad-spectrum benefits of glucocorticoids from their adverse metabolic effects. The glucocorticoid-induced leucine zipper protein (GILZ; also known as TSC22 domain family protein 3) is a glucocorticoid-responsive molecule whose interactions with signal transduction pathways, many of which are operative in RA and other inflammatory diseases, suggest that it is a key endogenous regulator of the immune response. The overlap between the observed effects of GILZ on the immune system and those of glucocorticoids strongly suggest GILZ as a critical mediator of the therapeutic effects of glucocorticoids. Observations of the immunomodulatory effects of GILZ in human RA synovial cells, and in an in vivo model of RA, support the hypothesis that GILZ is a key glucocorticoid-induced regulator of inflammation in RA. Moreover, evidence that the effect of GILZ on bone loss might be in contrast to those of glucocorticoids suggests manipulation of GILZ as a potential means of dissociating the beneficial anti-inflammatory effects of glucocorticoids from their negative metabolic repercussions.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Glucocorticoides/uso terapêutico , Imunomodulação/imunologia , Fatores de Transcrição/imunologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
10.
Arthritis Rheum ; 62(9): 2651-61, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20496421

RESUMO

OBJECTIVE: Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced protein, the reported molecular interactions of which suggest that it functions to inhibit inflammation. However, the role of endogenous GILZ in the regulation of inflammation in vivo has not been established. This study was undertaken to examine the expression and function of GILZ in vivo in collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis (RA), and in RA synoviocytes. METHODS: GILZ expression was detected in mouse and human synovium by immunohistochemistry and in cultured cells by real-time polymerase chain reaction and permeabilization flow cytometry. GILZ function was assessed in vivo by small interfering RNA (siRNA) silencing using cationic liposome-encapsulated GILZ or control nontargeting siRNA and was assessed in vitro using transient overexpression. RESULTS: GILZ was readily detectable in the synovium of mice with CIA and was up-regulated by therapeutic doses of glucocorticoids. Depleting GILZ expression in vivo increased the clinical and histologic severity of CIA and increased synovial expression of tumor necrosis factor and interleukin-1 (IL-1), without affecting the levels of circulating cytokines or anticollagen antibodies. GILZ was highly expressed in the synovium of patients with active RA and in cultured RA synovial fibroblasts, and GILZ overexpression in synovial fibroblasts inhibited IL-6 and IL-8 release. CONCLUSION: Our findings indicate that GILZ functions as an endogenous inhibitor of chronic inflammation via effects on cytokine expression and suggest that local modulation of GILZ expression could be a beneficial therapeutic strategy.


Assuntos
Artrite Experimental/metabolismo , Glucocorticoides/fisiologia , Mediadores da Inflamação/fisiologia , Fatores de Transcrição/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Células Cultivadas , Citocinas/metabolismo , Dexametasona/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Inativação Gênica , Glucocorticoides/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fatores de Transcrição/genética , Transfecção
11.
Arthritis Rheum ; 60(8): 2220-31, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19644855

RESUMO

OBJECTIVE: Macrophage migration inhibitory factor (MIF) is a proinflammatory mediator involved in the pathogenesis of rheumatoid arthritis. This study was undertaken to identify the MIF promoter elements responsible for regulating gene expression. METHODS: Luciferase reporter gene assays were used to identify the MIF promoter sequence responsible for basal activity. Bioinformatic analysis was used to predict transcription factor binding sites, and electrophoretic mobility shift assay (EMSA) was used to demonstrate transcription factor binding. Chromatin immunoprecipitation (ChIP) was used to demonstrate transcription factor loading on the MIF promoter. RESULTS: We identified the minimal promoter sequence required for basal MIF promoter activity that was also capable of conferring glucocorticoid-dependent inhibition in a T lymphocyte model cell line. Deletion studies and EMSA revealed 2 elements in the MIF promoter that were responsible for basal promoter activity. The 5' element binds CREB/activating transcription factor 1, and the 3' element is a functional hypoxia-responsive element binding hypoxia-inducible factor 1alpha. Further studies demonstrated that the cis elements are both required for glucocorticoid-dependent inhibition. ChIP demonstrated glucocorticoid-dependent recruitment of glucocorticoid receptor alpha to the MIF promoter in lymphocytes within 1 hour of treatment and a concomitant decrease in acetylated histone H3. CONCLUSION: Our findings indicate that hypoxia and glucocorticoid signaling converge on a single element regulating MIF; this regulatory unit is a potential interacting node for microenvironment sensing of oxygen tension and glucocorticoid action in foci of inflammation.


Assuntos
Hipóxia Celular/genética , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Transdução de Sinais/genética , Sequência de Bases , Linhagem Celular , Cromatografia de Afinidade/métodos , DNA/química , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos/química , Ligação Proteica/genética , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA