Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 104(2): 343-357, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29570832

RESUMO

The chemokine receptor CXCR4 (C-X-C chemokine receptor type 4 also known as fusin or CD184 (cluster of differentiation 184)) is implicated in various biological and pathological processes of the hematopoietic and immune systems. CXCR4 is also one of the major coreceptors for HIV-1 entry into target cells and is overexpressed in many cancers, supporting cell survival, proliferation, and migration. CXCR4 is thus an extremely relevant drug target. Among the different strategies to block CXCR4, chemokine-derived peptide inhibitors hold great therapeutic potential. In this study, we used the N-terminus of vCCL2/vMIPII, a viral CXCR4 antagonist chemokine, as a scaffold motif to engineer and select CXCR4 peptide inhibitors, called Mimokines, which imitate the chemokine-binding mode but display an enhanced receptor affinity, antiviral properties, and receptor selectivity. We first engineered a Mimokine phage displayed library based on the first 21 residues of vCCL2, in which cysteine 11 and 12 were fully randomized and screened it against purified CXCR4 stabilized in liposomes. We identified Mimokines displaying up to 4-fold higher affinity for CXCR4 when compared to the reference peptide and fully protected MT-4 cells against HIV-1 infection. These selected Mimokines were then subjected to dimerization, D-amino acid, and aza-ß3-amino acid substitution to further enhance their potency and selectivity. Optimized Mimokines exhibited up to 120-fold enhanced CXCR4 binding (range of 20 nM) and more than 200-fold improved antiviral properties (≤ 1 µM) compared to the parental Mimokines. Interestingly, these optimized Mimokines also showed up to 25-fold weaker affinity for ACKR3/CXCR7 and may therefore serve as lead compounds for further development of more selective CXCR4 peptide inhibitors and probes.


Assuntos
Quimiocinas/química , Descoberta de Drogas/métodos , Receptores CXCR4/antagonistas & inibidores , Técnicas de Visualização da Superfície Celular , Humanos
2.
AIDS ; 30(3): 377-82, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26760231

RESUMO

OBJECTIVES: The recent identification of neutralizing antibodies able to prevent viral rebound reemphasized the interest in humoral immune responses to control HIV-1 infection. In this study, we characterized HIV-1-inhibiting sequences from heavy-chain complementary determining region 3 (HCDR3) repertoires of a viremic controller. DESIGN AND METHODS: IgM and IgG-derived HCDR3 repertoires of a viremic controller presenting plasma-neutralizing activity and characterized by over 20 years of infection with a stable CD4 T-cell count were displayed on filamentous phage to identify HCDR3 repertoire-derived peptides inhibiting HIV-1 entry. RESULTS: Screening of phage libraries against recombinant gp120 led to the identification of an HCDR3-derived peptide sequence (LRTV-1) displaying antiviral properties against both X4 and R5 viruses. The interaction of LRTV-1 with gp120 was enhanced upon CD4 binding and sequence comparison revealed homology between LRTV-1 and the second extracellular loop of C-X-C chemokine receptor type 4 (CXCR4) (11/23) and the N-terminus of C-C chemokine receptor type 5 (CCR5) (7/23). Alanine scanning experiments identified different clusters of residues critical for interaction with the viral envelope protein. CONCLUSIONS: LRTV-1 peptide is to date the smallest human HCDR3 repertoire-derived peptide identified by phage display inhibiting HIV entry of R5 and X4 viruses. This peptide recognizes a CD4-dependent gp120 epitope critical for coreceptor binding and mimics the surface of CXCR4 and CCR5. Our data emphasize the potential of human HCDR3 immune repertoires as sources of small biologically active peptides for HIV cure.


Assuntos
Anticorpos Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Internalização do Vírus/efeitos dos fármacos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Sobreviventes de Longo Prazo ao HIV , HIV-1/fisiologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Testes de Neutralização , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Receptores CCR5/química , Receptores CXCR4/química
3.
FEBS J ; 278(16): 2867-78, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21651727

RESUMO

Phage display technology is a powerful selection approach to identify strong and specific binders to a large variety of targets. In this study, we compared the efficacy of a phage library displaying human heavy chain complementarity determining region 3 (HCDR3) repertoires with a set of conventional random peptide libraries for the identification of CXCR4 antagonists using a peptide corresponding to the second extracellular loop of the receptor CXCR4 as target. A total of 11 selection campaigns on this target did not result in any specific ligand from the random peptide libraries. In contrast, a single selection campaign with an HCDR3 library derived from the IgM repertoire of a nonimmunized donor resulted in nine specific peptides with lengths ranging from 10 to 19 residues. Four of these HCDR3 sequences interacted with native receptor and the most frequently isolated peptide displayed an affinity of 5.6 µm and acted as a CXCR4 antagonist (IC(50) = 23 µm). To comprehend the basis of the highly efficient HCDR3 library selection, its biochemical properties were investigated. The HCDR3 length varied from 3 to 21 residues and displayed a biased amino acid content with a predominant proportion of Tyr, Gly, Ser and Asp. Repetitive and conserved motifs were observed in the majority of the HCDR3 sequences. The strength and efficacy of the HCDR3 libraries reside in the combination of multiple size peptides and a naturally biased sequence variation. Therefore, HCDR3 libraries represent a powerful and versatile alternative to fully randomized peptide libraries, in particular for difficult targets.


Assuntos
Biblioteca de Peptídeos , Receptores CXCR4/antagonistas & inibidores , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade/química , Biblioteca Gênica , Humanos , Imunoglobulina M/química
4.
Mol Immunol ; 45(5): 1366-73, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17936360

RESUMO

In this study we constructed two phage libraries displaying non-immunized natural human IgM derived HCDR3 repertoires. One library was structurally constrained by a Gly to Cys substitution at position 104 enabling the formation of a disulfide bridge with the Cys at position 92. Panning of these libraries on an anti-human influenza hemagglutinin (HA) antibody resulted in the selection of 16 different HCDR3 loops displaying different degrees of sequence homology with the HA epitope. The specificity of the HCDR3 loops recovered from the structurally constrained library was confirmed by competition assays using the HA epitope. Only one of these HCDR3 peptides contained Cys104. Structural analysis of these sequences revealed that the loss of Cys104 was associated with an increased preference for the formation of the type I beta-turn required for high affinity binding to the antibody. Affinity studies confirmed that the HCDR3 peptides containing the sequence YDVPDY and Gly104 had affinities in the nanomolar range (K(d)=7.6 nM) comparable to the HA epitope. These findings provided evidence that the recovered HCDR3 sequences may bind to their target in a conformation that is unreachable by the parental antibody from which the HCDR3 was derived. Furthermore, the isolation of target-specific and high affinity binders demonstrates the value of HCDR3 libraries as a source of 'biologically randomized' sequences of human origin for the identification of peptidic lead molecules.


Assuntos
Regiões Determinantes de Complementaridade , Epitopos , Hemaglutininas/imunologia , Cadeias Pesadas de Imunoglobulinas , Influenza Humana/imunologia , Mimetismo Molecular , Peptídeos/imunologia , Sequência de Aminoácidos , Anticorpos , Afinidade de Anticorpos , Humanos , Imunoglobulina M , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/isolamento & purificação , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA