Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(10): 5149-5163, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265106

RESUMO

Given the growing scientific and industrial interests in green microalgae, a comprehensive understanding of the forces controlling the colloidal stability of these bioparticles and their interactions with surrounding aqueous microenvironment is required. Accordingly, we addressed here the electrostatic and hydrophobic surface properties of Chlorella vulgaris from the population down to the individual cell levels. We first investigated the organisation of the electrical double layer at microalgae surfaces on the basis of electrophoresis measurements. Interpretation of the results beyond zeta-potential framework underlined the need to account for both the hydrodynamic softness of the algae cells and the heterogeneity of their interface formed with the outer electrolyte solution. We further explored the nature of the structural charge carriers at microalgae interfaces through potentiometric proton titrations. Extraction of the electrostatic descriptors of interest from such data was obscured by cell physiology processes and dependence thereof on prevailing measurement conditions, which includes light, temperature and medium salinity. As an alternative, cell electrostatics was successfully evaluated at the cellular level upon mapping the molecular interactions at stake between (positively and negatively) charged atomic force microscopy tips and algal surface via chemical force microscopy. A thorough comparison between charge-dependent tip-to-algae surface adhesion and hydrophobicity level of microalgae surface evidenced that the contribution of electrostatics to the overall interaction pattern is largest, and that the electrostatic/hydrophobic balance can be largely modulated by pH. Overall, the combination of multiscale physicochemical approaches allowed a drawing of some of the key biosurface properties that govern microalgae cell-cell and cell-surface interactions.


Assuntos
Chlorella vulgaris , Microalgas , Prótons , Propriedades de Superfície , Água , Interações Hidrofóbicas e Hidrofílicas , Microalgas/metabolismo
2.
Colloids Surf B Biointerfaces ; 226: 113324, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146477

RESUMO

The Gram-positive bacterium Staphylococcus epidermidis is responsible for important nosocomial infections. With the continuous emergence of antibiotic-resistant strains, the search for new treatments has been amplified in the last decades. A potential candidate against multidrug-resistant bacteria is squalamine, a natural aminosterol discovered in dogfish sharks. Despite its broad-spectrum efficiency, little is known about squalamine mode of action. Here, we used atomic force microscopy (AFM) imaging to decipher the effect of squalamine on S. epidermidis morphology, revealing the peptidoglycan structure at the bacterial surface after the drug action. Single-molecule force spectroscopy with squalamine-decorated tips shows that squalamine binds to the cell surface via the spermidine motif, most likely through electrostatic interactions between the amine groups of the molecule and the negatively-charged bacterial cell wall. We demonstrated that - although spermidine is sufficient for the initial attachment of squalamine to S. epidermidis - the integrity of the molecule needs to be conserved for its antimicrobial action. A deeper analysis of the AFM force-distance signatures suggests the implication of the accumulation-associated protein (Aap), one of the main adhesins of S. epidermidis, in the initial binding of squalamine to the bacterial cell wall. This work highlights that AFM -combined with microbiological assays at the bacterial suspension scale- is a valuable approach to better understand the molecular mechanisms behind the efficiency of squalamine antibacterial activity.


Assuntos
Espermidina , Staphylococcus epidermidis , Microscopia de Força Atômica , Espermidina/farmacologia , Adesinas Bacterianas
3.
Nat Commun ; 14(1): 2553, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137893

RESUMO

Bacterial biofilms are surface-attached communities that are difficult to eradicate due to a high tolerance to antimicrobial agents. The use of non-biocidal surface-active compounds to prevent the initial adhesion and aggregation of bacterial pathogens is a promising alternative to antibiotic treatments and several antibiofilm compounds have been identified, including some capsular polysaccharides released by various bacteria. However, the lack of chemical and mechanistic understanding of the activity of these polymers limits their use to control biofilm formation. Here, we screen a collection of 31 purified capsular polysaccharides and first identify seven new compounds with non-biocidal activity against Escherichia coli and/or Staphylococcus aureus biofilms. We measure and theoretically interpret the electrophoretic mobility of a subset of 21 capsular polysaccharides under applied electric field conditions, and we show that active and inactive polysaccharide polymers display distinct electrokinetic properties and that all active macromolecules share high intrinsic viscosity features. Despite the lack of specific molecular motif associated with antibiofilm properties, the use of criteria including high density of electrostatic charges and permeability to fluid flow enables us to identify two additional capsular polysaccharides with broad-spectrum antibiofilm activity. Our study therefore provides insights into key biophysical properties discriminating active from inactive polysaccharides. The characterization of a distinct electrokinetic signature associated with antibiofilm activity opens new perspectives to identify or engineer non-biocidal surface-active macromolecules to control biofilm formation in medical and industrial settings.


Assuntos
Anti-Infecciosos , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Biofilmes , Antibacterianos/farmacologia , Bactérias , Polímeros , Testes de Sensibilidade Microbiana
4.
J Colloid Interface Sci ; 642: 154-168, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003010

RESUMO

HYPOTHESIS: Electrostatics of soft (ion-permeable) (bio)particles (e.g. microorganisms, core/shell colloids) in aqueous electrolytes is commonly formulated by the mean-field Poisson-Boltzmann theory and integration of the charge contributions from electrolyte ions and soft material. However, the effects connected to the size of the electrolyte ions and that of the structural charges carried by the particle, to dielectric decrement and ion-ion correlations on soft interface electrostatics have been so far considered at the margin, despite the limits of the Gouy theory for condensed and/or multivalent electrolytes. EXPERIMENTS: Accordingly, we modify herein the Poisson-Boltzmann theory for core/shell (bio)interfaces to include the aforementioned molecular effects considered separately or concomitantly. The formalism is applicable for poorly to highly charged particles in the thin electric double layer regime and to unsymmetrical multivalent electrolytes. FINDINGS: Computational examples of practical interests are discussed with emphasis on how each considered molecular effect or combination thereof affects the interfacial potential distribution depending on size and valence of cations and anions, size of particle charges, length scale of ionic correlations and shell-to-Debye layer thickness ratio. The origins of here-evidenced pseudo-harmonic potential profile and ion size-dependent screening of core/shell particle charges are detailed. In addition, the existence and magnitude of the Donnan potential when reached in the shell layer are shown to depend on the excluded volumes of the electrolyte ions.

5.
Microorganisms ; 10(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744723

RESUMO

Squalamine is a natural aminosterol that has been discovered in the tissues of the dogfish shark (Squalus acanthias). Studies have previously demonstrated that this promoter compound and its derivatives exhibit potent bactericidal activity against Gram-negative, Gram-positive bacteria, and multidrug-resistant bacteria. The antibacterial activity of squalamine was found to correlate with that of other antibiotics, such as colistin and polymyxins. Still, in the field of microbiology, evidence has shown that squalamine and its derivatives have antifungal activity, antiprotozoa effect against a limited list of protozoa, and could exhibit antiviral activity against both RNA- and DNA-enveloped viruses. Furthermore, squalamine and its derivatives have been identified as being antiangiogenic compounds in the case of several types of cancers and induce a potential positive effect in the case of other diseases such as experimental retinopathy and Parkinson's disease. Given the diverse effects of the squalamine and its derivatives, in this review we provide the different advances in our understanding of the various effects of these promising molecules and try to draw up a non-exhaustive list of the different mechanisms of actions of squalamine and its derivatives on the human organism and on different pathogens.

6.
Nanoscale Horiz ; 7(5): 515-525, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35234779

RESUMO

Peroxiredoxins from the Prx1 subfamily (Prx) are highly regulated multifunctional proteins involved in oxidative stress response, redox signaling and cell protection. Prx is a homodimer that associates into a decamer. The monomer C-terminus plays intricate roles in Prx catalytic functions, decamer stability and interaction with its redox partner, the small reductase sulfiredoxin (Srx), that regulates the switching between Prx cellular functions. As only static structures of covalent Prx-Srx complexes have been reported, whether Srx binding dissociates the decameric assembly and how Prx subunit flexibility impacts complex formation are unknown. Here, we assessed the non-covalent interaction mechanism and dynamics in the solution of Saccharomyces cerevisiae Srx with the ten subunits of Prx Tsa1 at the decamer level via a combination of multiscale biophysical approaches including native mass spectrometry. We show that the ten subunits of the decamer can be saturated by ten Srx molecules and that the Tsa1 decamer in complex with Srx does not dissociate in solution. Furthermore, the binding events of atomic force microscopy (AFM) tip-grafted Srx molecules to Tsa1 individual subunits were relevant to the interactions between free molecules in solution. Combined with protein engineering and rapid kinetics, the observation of peculiar AFM force-distance signatures revealed that Tsa1 C-terminus flexibility controls Tsa1/Srx two-step binding and dynamics and determines the force-induced dissociation of Srx from each subunit of the decameric complex in a sequential or concerted mode. This combined approach from the solution to the single-molecule level offers promising prospects for understanding oligomeric protein interactions with their partners.


Assuntos
Oxirredutases , Peroxirredoxinas , Biofísica , Catálise , Microscopia de Força Atômica
7.
Commun Biol ; 4(1): 678, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083706

RESUMO

Toxicity mechanisms of metal oxide nanoparticles towards bacteria and underlying roles of membrane composition are still debated. Herein, the response of lipopolysaccharide-truncated Escherichia coli K12 mutants to TiO2 nanoparticles (TiO2NPs, exposure in dark) is addressed at the molecular, single cell, and population levels by transcriptomics, fluorescence assays, cell nanomechanics and electrohydrodynamics. We show that outer core-free lipopolysaccharides featuring intact inner core increase cell sensitivity to TiO2NPs. TiO2NPs operate as membrane strippers, which induce osmotic stress, inactivate cell osmoregulation and initiate lipid peroxidation, which ultimately leads to genesis of membrane vesicles. In itself, truncation of lipopolysaccharide inner core triggers membrane permeabilization/depolarization, lipid peroxidation and hypervesiculation. In turn, it favors the regulation of TiO2NP-mediated changes in cell Turgor stress and leads to efficient vesicle-facilitated release of damaged membrane components. Remarkably, vesicles further act as electrostatic baits for TiO2NPs, thereby mitigating TiO2NPs toxicity. Altogether, we highlight antagonistic lipopolysaccharide-dependent bacterial responses to nanoparticles and we show that the destabilized membrane can generate unexpected resistance phenotype.


Assuntos
Vesículas Citoplasmáticas/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pressão Osmótica/efeitos dos fármacos , Titânio/toxicidade , Vesículas Citoplasmáticas/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Microscopia de Força Atômica/métodos , Mutação
8.
Front Cell Infect Microbiol ; 11: 643312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718288

RESUMO

Although belong to the same genus, Aspergillus fumigatus is primarily involved in invasive pulmonary infection, whereas Aspergillus flavus is a common cause of superficial infection. In this study, we compared conidia (the infective propagules) of these two Aspergillus species. In immunocompetent mice, intranasal inoculation with conidia of A. flavus resulted in significantly higher inflammatory responses in the lungs compared to mice inoculated with A. fumigatus conidia. In vitro assays revealed that the dormant conidia of A. flavus, unlike A. fumigatus dormant conidia, are immunostimulatory. The conidial surface of A. fumigatus was covered by a rodlet-layer, while that of A. flavus were presented with exposed polysaccharides. A. flavus harbored significantly higher number of proteins in its conidial cell wall compared to A. fumigatus conidia. Notably, ß-1,3-glucan in the A. flavus conidial cell-wall showed significantly higher percentage of branching compared to that of A. fumigatus. The polysaccharides ensemble of A. flavus conidial cell wall stimulated the secretion of proinflammatory cytokines, and conidial cell wall associated proteins specifically stimulated IL-8 secretion from the host immune cells. Furthermore, the two species exhibited different sensitivities to antifungal drugs targeting cell wall polysaccharides, proposing the efficacy of species-specific treatment strategies. Overall, the species-specific organization of the conidial cell wall could be important in establishing infection by the two Aspergillus species.


Assuntos
Aspergillus fumigatus , Aspergillus , Animais , Aspergillus flavus , Parede Celular , Camundongos , Esporos Fúngicos
9.
J Colloid Interface Sci ; 582(Pt B): 764-772, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916574

RESUMO

Surface protection against biofilms is still an open challenge. Current strategies rely on coatings that are meant to guarantee antiadhesive or antimicrobial effects. While it seems difficult to ensure antiadhesion in complex media and against all the adhesive arsenal of microbes, strategies based on antimicrobials lack from sustainable functionalization methodologies to allow the perfect efficiency of the grafted molecules. Here we used the high affinity ligand-receptor interaction between biotin and streptavidin to functionalize surfaces with lysozyme, an enzyme that degrades the bacterial peptidoglycan cell wall. Biotinylated lysozyme was grafted on surfaces coated with streptavidin receptors. Using atomic force microscopy (AFM)-based single molecule force spectroscopy, we showed that grafting through ligand-receptor interaction allows the correct orientation of the enzyme on the substrate for enhanced activity towards the microbial target. The antibacterial efficiency was tested against Micrococcus luteus and revealed that surface protection was improved when lysozyme was grafted through the ligand-receptor interaction. These results suggest that bio-molecular interactions are promising for a sustainable grafting of antimicrobial agents on surfaces.


Assuntos
Anti-Infecciosos , Muramidase , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Microscopia de Força Atômica , Estreptavidina , Propriedades de Superfície
10.
Nanoscale ; 12(47): 23885-23896, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289756

RESUMO

Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.


Assuntos
Adesivos , Fímbrias Bacterianas , Microscopia de Força Atômica , Nanotecnologia , Propriedades de Superfície
11.
RSC Adv ; 10(33): 19258-19275, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35515432

RESUMO

Atomic Force Microscopy (AFM) is a powerful technique for the measurement of mechanical properties of individual cells in two (x × y) or three (x × y × time) dimensions. The instrumental progress makes it currently possible to generate a large amount of data in a relatively short time, which is particularly true for AFM operating in so-called PeakForce tapping mode (Bruker corporation). The latter corresponds to an AFM probe that periodically hits the sample surface while the pico-newton level interaction force is recorded from cantilever deflection. The method provides unprecedented high-resolution (a few tens of nm) imaging of the mechanical features of soft biological samples (e.g. bacteria, yeasts) and of hard abiotic surfaces (e.g. minerals). The rapid conversion of up to several tens of thousands spatially resolved force curves typically collected in AFM PeakForce tapping mode over a given cell surface area into comprehensive nanomechanical information requires the development of robust data analysis methodologies and dedicated numerical tools. In this work, we report an automated algorithm for (i) a rapid and unambiguous detection of the indentation regimes corresponding to non-linear and linear deformations of bacterial surfaces upon compression by the AFM probe, (ii) the subsequent evaluation of the Young modulus and cell surface stiffness, and (iii) the generation of spatial mappings of relevant nanomechanical properties at the single cell level. The procedure involves consistent evaluation of the contact point between the AFM probe and sample biosurface and that of the threshold indentation value marking the transition between non-linear and linear deformation regimes. For comparison purposes, the former regime is here analyzed on the basis of Hertz and Sneddon models corrected or not for effects of finite sample thickness. Analysis of AFM measurements performed on a selected Escherichia coli strain is detailed to demonstrate the feasibility, rapidity and robustness of the here-proposed PeakForce data treatment process. The flexibility of the algorithm allows consideration of force curve parameterizations other than that detailed here, which may be desired for investigation of e.g. eukaryotes nanomechanics. The performance of the adopted Hertz-based and Sneddon-based contact mechanics formalisms in recovering experimental data and in identifying nanomechanical heterogeneities at the bacterium scale is further thoroughly discussed.

12.
ACS Appl Mater Interfaces ; 11(51): 48574-48582, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31766843

RESUMO

Freshwater biofilms play an essential ecological role, but they also adversely affect human activities through undesirable biofouling of artificial submerged structures. They form complex aggregates of microorganisms that colonize any type of substratum. In phototrophic biofilms, diatoms dominate in biomass and produce copious amount of extracellular polymeric substances (EPSs), making them efficient early colonizers. Therefore, a better understanding of diatoms adhesive properties is essential to develop new anti-biofouling strategies. In this context, we used atomic force microscopy (AFM) to decipher the topography and adhesive mechanisms of the common freshwater diatom Nitzschia palea. Images taken in physiological conditions revealed typical ultrastructural features with a few nanometers resolution. Using single-cell force spectroscopy, we showed that N. palea strongly adheres to hydrophobic surfaces as compared to hydrophilic ones. Chemical force spectroscopy with hydrophobic tips further confirmed that the adhesion is governed by surface-associated hydrophobic EPS distributed in clusters at the frustule surface, and mostly composed of (glyco)-lipids as revealed by Raman spectroscopy. Collectively, our results demonstrate that AFM-based nanoscopy, combined with Raman spectroscopy, is a powerful tool to provide new insights into the adhesion mechanisms of diatoms.


Assuntos
Diatomáceas/química , Biofilmes , Diatomáceas/fisiologia , Microscopia de Força Atômica , Análise Espectral Raman , Poluentes Químicos da Água/química
13.
Sci Rep ; 9(1): 9696, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273247

RESUMO

Mutations in the rfa operon leading to severely truncated lipopolysaccharide (LPS) structures are associated with pleiotropic effects on bacterial cells, which in turn generates a complex phenotype termed deep-rough. Literature reports distinct behavior of these mutants in terms of susceptibility to bacteriophages and to several antibacterial substances. There is so far a critical lack of understanding of such peculiar structure-reactivity relationships mainly due to a paucity of thorough biophysical and biochemical characterizations of the surfaces of these mutants. In the current study, the biophysicochemical features of the envelopes of Escherichia coli deep-rough mutants are identified from the molecular to the single cell and population levels using a suite of complementary techniques, namely microelectrophoresis, Atomic Force Microscopy (AFM) and Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) for quantitative proteomics. Electrokinetic, nanomechanical and proteomic analyses evidence enhanced mutant membrane destabilization/permeability, and differentiated abundances of outer membrane proteins involved in the susceptibility phenotypes of LPS-truncated mutants towards bacteriophages, antimicrobial peptides and hydrophobic antibiotics. In particular, inner-core LPS altered mutants exhibit the most pronounced heterogeneity in the spatial distribution of their Young modulus and stiffness, which is symptomatic of deep damages on cell envelope likely to mediate phage infection process and antibiotic action.


Assuntos
Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glicosiltransferases/metabolismo , Lipopolissacarídeos/química , Proteínas de Membrana/metabolismo , Mutação , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Glicosiltransferases/genética , Proteínas de Membrana/genética , Microscopia de Força Atômica , Proteoma/metabolismo
14.
Cell Surf ; 5: 100023, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743139

RESUMO

The rodlet structure present on the Aspergillus fumigatus conidial surface hides conidia from immune recognition. In spite of the essential biological role of the rodlets, the molecular basis for their self-assembly and disaggregation is not known. Analysis of the soluble forms of conidia-extracted and recombinant RodA by NMR spectroscopy has indicated the importance of disulfide bonds and identified two dynamic regions as likely candidates for conformational change and intermolecular interactions during conversion of RodA into the amyloid rodlet structure. Point mutations introduced into the RODA sequence confirmed that (1) mutation of a single cysteine was sufficient to block rodlet formation on the conidial surface and (2) both presumed amyloidogenic regions were needed for proper rodlet assembly. Mutations in the two putative amyloidogenic regions retarded and disturbed, but did not completely inhibit, the formation of the rodlets in vitro and on the conidial surface. Even in a disturbed form, the presence of rodlets on the surface of the conidia was sufficient to immunosilence the conidium. However, in contrast to the parental conidia, long exposure of mutant conidia lacking disulfide bridges within RodA or expressing RodA carrying the double (I115S/I146G) mutation activated dendritic cells with the subsequent secretion of proinflammatory cytokines. The immune reactivity of the RodA mutant conidia was not due to a modification in the RodA structure, but to the exposure of different pathogen-associated molecular patterns on the surface as a result of the modification of the rodlet surface layer. The full degradation of the rodlet layer, which occurs during early germination, is due to a complex array of cell wall bound proteases. As reported earlier, this loss of the rodlet layer lead to a strong anti-fumigatus host immune response in mouse lungs.

15.
Cell Surf ; 5: 100031, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743147

RESUMO

In the last decades, atomic force microscopy (AFM) has evolved towards an accurate and lasting tool to study the surface of living cells in physiological conditions. Through imaging, single-molecule force spectroscopy and single-cell force spectroscopy modes, AFM allows to decipher at multiple scales the morphology and the molecular interactions taking place at the cell surface. Applied to microbiology, these approaches have been used to elucidate biophysical properties of biomolecules and to directly link the molecular structures to their function. In this review, we describe the main methods developed for AFM-based microbial surface analysis that we illustrate with examples of molecular mechanisms unravelled with unprecedented resolution.

16.
Methods Mol Biol ; 1814: 403-414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956246

RESUMO

Functionalization of AFM probes with biomolecules or microorganisms allows for a better understanding of the interaction mechanisms driving microbial adhesion. Here we describe the most commonly used protocols to graft molecules and bacteria to AFM cantilevers. The bioprobes obtained that way enable to measure forces down to the single-cell and single-molecule levels.


Assuntos
Bactérias/citologia , Aderência Bacteriana , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula , Análise de Célula Única
17.
Nanoscale ; 10(26): 12743-12753, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29946619

RESUMO

The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.


Assuntos
Dendrímeros , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanopartículas , Polissacarídeos Bacterianos , Escherichia coli , Lactococcus lactis , Espectrofotometria Atômica
18.
Nanoscale ; 10(7): 3181-3190, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29372221

RESUMO

Soft (nano)colloids are increasingly used in medical applications due to the versatile options they offer in terms of e.g. tunable chemical composition, adaptable physical properties and (bio)functionalization perspectives. Obtaining a clear understanding of the nature of the interaction forces that such particles experience with neighboring charged (bio)surfaces is a mandatory prerequisite to draw a comprehensive and mechanistic picture of their stability and reactivity and to further optimize their current functionalities. In this study, adopting an original strategy for nanoparticle attachment to atomic force microscopy (AFM) tips, we demonstrate that the sign of electrostatic forces between carboxylate-terminated poly(amidoamine) nanodendrimers (∼9 nm in diameter) and planar cysteamine-coated gold surfaces can be tailored under fixed pH conditions upon the sole variation of the monovalent salt concentration in solution. The origin of this unconventional electrostatic force reversal is deciphered upon confrontation between AFM force measurements and mean-field force evaluation performed beyond the Derjaguin approximation by integrating the dendrimer and cysteamine electrostatic properties derived independently from electrokinetic measurements. It is shown that the electrostatic force reversal (i) originates from the zwitterionic character of the nanodendrimer-solution interphase, and (ii) becomes operational under the strict condition that the sub-nanometric separation distance between peripheral carboxylate groups and intraparticulate amines is of the order of the characteristic electric Debye layer thickness. The possibility to mediate - via suitable adjustment of monovalent salt content in solution - both the magnitude and sign of the electrostatic forces acting on soft interfaces with zwitterionic functionality paves the way for the design of innovative strategies to control the stability of nanoparticles against aggregation, and to modulate their adhesion onto inorganic surfaces or living organisms.

19.
Sci Rep ; 6: 32371, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582320

RESUMO

The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187-385). Here, we show that BR187-385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187-378 or the longer BR120-378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187-385 homo-dimers via an intermolecular ß-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120-166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/metabolismo , Membrana Celular/metabolismo , DNA Bacteriano/química , Furina/metabolismo , Expressão Gênica , Conformação de Ácido Nucleico , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
ACS Nano ; 10(3): 3443-52, 2016 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-26908275

RESUMO

The development of bacterial biofilms on surfaces leads to hospital-acquired infections that are difficult to fight. In Staphylococci, the cationic polysaccharide intercellular adhesin (PIA) forms an extracellular matrix that connects the cells together during biofilm formation, but the molecular forces involved are unknown. Here, we use advanced force nanoscopy techniques to unravel the mechanism of PIA-mediated adhesion in a clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strain. Nanoscale multiparametric imaging of the structure, adhesion, and elasticity of bacteria expressing PIA shows that the cells are surrounded by a soft and adhesive matrix of extracellular polymers. Cell surface softness and adhesion are dramatically reduced in mutant cells deficient for the synthesis of PIA or under unfavorable growth conditions. Single-cell force spectroscopy demonstrates that PIA promotes cell-cell adhesion via the multivalent electrostatic interaction with polyanionic teichoic acids on the S. aureus cell surface. This binding mechanism rationalizes, at the nanoscale, the well-known ability of PIA to strengthen intercellular adhesion in staphylococcal biofilms. Force nanoscopy offers promising prospects for understanding the fundamental forces in antibiotic-resistant biofilms and for designing anti-adhesion compounds targeting matrix polymers.


Assuntos
Aderência Bacteriana , Polissacarídeos Bacterianos/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Biofilmes/crescimento & desenvolvimento , Humanos , Microscopia de Força Atômica , Staphylococcus aureus/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA