Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 27(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889313

RESUMO

In several of his artworks, for instance the Venezie cycle, Fontana employed metallic paints; previous investigations on such materials highlighted the use of different synthetic binders and of thick paint layers below the metal one, having different colours to change the visual perception of the metallic surface. In the present work, a monochrome silver "Concetto spaziale" by the Italo-Argentine artist belonging to a private collection recently gifted to the museum of the Church of San Fedele in Milano, Italy, was investigated to deepen the knowledge of this particular group of Fontana's paintings. The artwork was initially visually inspected in visible and ultraviolet (UV) light. Subsequently, a non-invasive spectroscopic investigation was performed by X-ray fluorescence (XRF), reflection Fourier-transform infrared (FTIR) and Raman spectroscopy. A minute fragment of silver-coloured paint was taken from the reverse of the painting, near the cut edge, and examined by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX) and micro-Fourier-transform Raman (FT-Raman) spectroscopy. The analytical data made it possible to identify the composition of the metallic paint layer and of the underlying dark one, both from the point of view of the pigments and of the binders used, also highlighting the potential of the non-invasive and micro-invasive methods adopted in the investigation.


Assuntos
Pinturas , Prata , Pintura , Análise Espectral Raman , Raios X
2.
Sensors (Basel) ; 22(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271199

RESUMO

This work deals with the identification of natural binders and the study of the complex stratigraphy in paintings using reflection FT-IR spectroscopy, a common diagnostic tool for cultural heritage materials thanks to its non-invasiveness. In particular, the potential of the near-infrared (NIR) spectral region, dominated by the absorption bands due to CH, CO, OH and NH functional groups, is successfully exploited to distinguish a lipid binder from a proteinaceous one, as well as the coexistence of the two media in laboratory-made model samples that simulate the complex multi-layered structure of a painting. The combination with multivariate analysis methods or with the calculation of indicative ratios between the intensity values of characteristic absorption bands is proposed to facilitate the interpretation of the spectral data. Furthermore, the greater penetration depth of NIR radiation is exploited to obtain information about the inner layers of the paintings, focusing in particular on the preparatory coatings of the supports. Finally, as proof of concept, FT-NIR analyses were also carried out on six paintings by artists working in Lombardy at the end of the 15th century, that exemplify different pictorial techniques.


Assuntos
Pinturas , Laboratórios , Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA