Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lancet Public Health ; 8(8): e618-e628, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516478

RESUMO

BACKGROUND: On Aug 29, 2021, Operation Allies Welcome (OAW) was established to support the resettlement of more than 80 000 Afghan evacuees in the USA. After identification of measles among evacuees, incoming evacuee flights were temporarily paused, and mass measles vaccination of evacuees aged 6 months or older was introduced domestically and overseas, with a 21-day quarantine period after vaccination. We aimed to evaluate patterns of measles virus transmission during this outbreak and the impact of control measures. METHODS: We conducted a measles outbreak investigation among Afghan evacuees who were resettled in the USA as part of OAW. Patients with measles were defined as individuals with an acute febrile rash illness between Aug 29, 2021, and Nov 26, 2021, and either laboratory confirmation of infection or epidemiological link to a patient with measles with laboratory confirmation. We analysed the demographics and clinical characteristics of patients with measles and used epidemiological information and whole-genome sequencing to track transmission pathways. A transmission model was used to evaluate the effects of vaccination and other interventions. FINDINGS: 47 people with measles (attack rate: 0·65 per 1000 evacuees) were reported in six US locations housing evacuees in four states. The median age of patients was 1 year (range 0-26); 33 (70%) were younger than 5 years. The age distribution shifted during the outbreak towards infants younger than 12 months. 20 (43%) patients with wild-type measles virus had rash onset after vaccination. No fatalities or community spread were identified, nor further importations after flight resumption. In a non-intervention scenario, transmission models estimated that a median of 5506 cases (IQR 10-5626) could have occurred. Infection clusters based on epidemiological criteria could be delineated into smaller clusters using phylogenetic analyses; however, sequences with few substitution count differences did not always indicate single lines of transmission. INTERPRETATION: Implementation of control measures limited measles transmission during OAW. Our findings highlight the importance of integration between epidemiological and genetic information in discerning between individual lines of transmission in an elimination setting. FUNDING: US Centers for Disease Control and Prevention.


Assuntos
Exantema , Sarampo , Lactente , Humanos , Vírus do Sarampo/genética , Saúde Pública , Filogenia , Sarampo/epidemiologia , Sarampo/prevenção & controle , Estudos Epidemiológicos
2.
NPJ Vaccines ; 6(1): 112, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475404

RESUMO

Japanese encephalitis virus (JEV) is the etiological agent of Japanese encephalitis (JE). The most commonly used vaccine used to prevent JE is the live-attenuated strain SA14-14-2, which was generated by serial passage of the wild-type (WT) JEV strain SA14. Two other vaccine candidates, SA14-5-3 and SA14-2-8 were derived from SA14. Both were shown to be attenuated but lacked sufficient immunogenicity to be considered effective vaccines. To better contrast the SA14-14-2 vaccine with its less-immunogenic counterparts, genetic diversity, ribavirin sensitivity, mouse virulence and mouse immunogenicity of the three vaccines were investigated. Next generation sequencing demonstrated that SA14-14-2 was significantly more diverse than both SA14-5-3 and SA14-2-8, and was slightly less diverse than WT SA14. Notably, WT SA14 had unpredictable levels of diversity across its genome whereas SA14-14-2 is highly diverse, but genetic diversity is not random, rather the virus only tolerates variability at certain residues. Using Ribavirin sensitivity in vitro, it was found that SA14-14-2 has a lower fidelity replication complex compared to SA14-5-3 and SA14-2-8. Mouse virulence studies showed that SA14-2-8 was the most virulent of the three vaccine strains while SA14-14-2 had the most favorable combination of safety (virulence) and immunogenicity for all vaccines tested. SA14-14-2 contains genetic diversity and sensitivity to the antiviral Ribavirin similar to WT parent SA14, and this genetic diversity likely explains the (1) differences in genomic sequences reported for SA14-14-2 and (2) the encoding of major attenuation determinants by the viral E protein.

3.
mSphere ; 5(6)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208518

RESUMO

Between 2015 and 2017, routine molecular surveillance in the United States detected multiple mumps viruses (MuVs) with mutations in the small hydrophobic (SH) gene compared to a reference virus of the same genotype. These mutations include an unusual pattern of uracil-to-cytosine hypermutations and other mutations resulting in the generation of premature stop codons or disruption of the canonical stop codon. The mumps virus SH protein may serve as a virulence factor, based on evidence that it inhibits apoptosis and innate immune signaling in vitro and that recombinant viruses that do not express the SH protein are attenuated in an animal model. In this study, mumps viruses bearing variant SH sequences were isolated from contemporary outbreak samples to evaluate the impact of the observed mutations on SH protein function. All isolates with variant SH sequences replicated in interferon-competent cells with no evidence of attenuation. Furthermore, all SH-variant viruses retained the ability to abrogate induction of NF-κB-mediated innate immune signaling in infected cells. Ectopic expression of variant mumps SH genes is consistent with findings from infection experiments, indicating that the observed abrogation of signaling was not mediated by other viral factors that may modulate innate immune signaling. Molecular surveillance is an important public health tool for monitoring the diversity of circulating mumps viruses and can provide insights into determinants of disease. These findings, in turn, will inform studies employing reverse genetics to elucidate the specific mechanisms of MuV pathogenesis and potential impacts of observed sequence variants on infectivity, fitness, and virulence.IMPORTANCE Mumps virus (MuV) outbreaks occur in the United States despite high coverage with measles, mumps, rubella (MMR) vaccine. Routine genotyping of laboratory-confirmed mumps cases has been practiced in the United States since 2006 to enhance mumps surveillance. This study reports the detection of unusual mutations in the small hydrophobic (SH) protein of contemporary laboratory-confirmed mumps cases and is the first to describe the impact of such mutations on SH protein function. These mutations are predicted to profoundly alter the amino acid sequence of the SH protein, which has been shown to antagonize host innate immune responses; however, they were neither associated with defects in virus replication nor attenuated protein function in vitro, consistent with detection in clinical specimens. A better understanding of the forces governing mumps virus sequence diversity and of the functional consequences of mutations in viral proteins is important for maintaining robust capacity for mumps detection and disease control.


Assuntos
Códon de Terminação/genética , Vírus da Caxumba/fisiologia , Mutação , Proteínas Virais/genética , Animais , Humanos , Sarampo/virologia , Virulência , Fatores de Virulência
4.
mBio ; 10(5)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641088

RESUMO

The molecular basis of attenuation for live-attenuated vaccines is poorly understood. The yellow fever (YF) 17D vaccine virus was derived from the wild-type, parental strain Asibi virus by serial passage in chicken tissue and has proven to be a very safe and efficacious vaccine. We have previously shown that wild-type Asibi is a typical RNA virus with high genetic diversity, while the 17D vaccine virus has very little genetic diversity. To investigate this further, we treated Asibi and 17D viruses with ribavirin, a GTP analog with strong antiviral activity that increases levels of mutations in the viral genome. As expected, ribavirin treatment introduced mutations into the Asibi virus genome at a very high frequency and decreased viral infectivity while, in contrast, the 17D vaccine virus was resistant to ribavirin, as treatment with the antiviral introduced very few mutations into the genome, and viral infectivity was not lost. The results were confirmed for another YF wild-type parental and vaccine pair, a wild-type French viscerotropic virus and French neurotropic vaccine. Using recombinant Asibi and 17D viruses, ribavirin sensitivity was located to viral nonstructural genes. Thus, two live-attenuated YF vaccine viruses are genetically stable even under intense mutagenic pressure, suggesting that attenuation of live-attenuated YF vaccines is due, at least in part, to fidelity of the replication complex resulting in high genetic stability.IMPORTANCE Live-attenuated viral vaccines are highly safe and efficacious but represent complex and often multigenic attenuation mechanisms. Most of these vaccines have been generated empirically by serial passaging of a wild-type (WT) virus in cell culture. One of the safest and most effective live-attenuated vaccines is yellow fever (YF) virus strain 17D, which has been used for over 80 years to control YF disease. The availability of the WT parental strain of 17D, Asibi virus, and large quantities of clinical data showing the effectiveness of the 17D vaccine make this WT parent/vaccine pair an excellent model for investigating RNA virus attenuation. Here, we investigate a mechanism of 17D attenuation and show that the vaccine virus is resistant to the antiviral compound ribavirin. The findings suggest that attenuation is in part due to a low probability of reversion or mutation of the vaccine virus genome to WT, thus maintaining a stable genotype despite external pressures.


Assuntos
Vacinas Atenuadas/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/virologia , Vírus da Febre Amarela/imunologia , Animais , Antivirais/uso terapêutico , Variação Genética/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Ribavirina/uso terapêutico
5.
mBio ; 9(5)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377281

RESUMO

One paradigm to explain the complexity of viral RNA populations is that the low fidelity of the RNA-dependent RNA polymerase (RdRp) drives high mutation rates and consequently genetic diversity. Like most RNA viruses, wild-type yellow fever virus (YFV) replication is error-prone due to the lack of proofreading by the virus-encoded RdRp. However, there is evidence that replication of the live attenuated YF vaccine virus 17D, derived from wild-type strain Asibi, is less error-prone than wild-type RNA viruses. Recent studies comparing the genetic diversity of wild-type Asibi and 17D vaccine virus found that wild-type Asibi has the typical heterogeneous population of an RNA virus, while there is limited intra- and interpopulation variability of 17D vaccine virus. Utilizing chimeric and mutant infectious clone-derived viruses, we show that high and low genetic diversity profiles of wild-type Asibi virus and vaccine virus 17D, respectively, are multigenic. Introduction of either structural (pre-membrane and envelope) genes or NS2B or NS4B substitutions into the Asibi and 17D backbone resulted in altered variant population, nucleotide diversity, and mutation frequency compared to the parental viruses. Additionally, changes in genetic diversity of the chimeric and mutant viruses correlated with the phenotype of multiplication kinetics in human alveolar A549 cells. Overall, the paradigm that only the error-prone RdRp controls genetic diversity needs to be expanded to address the role of other genes in genetic diversity, and we hypothesize that it is the replication complex as a whole and not the RdRp alone that controls genetic diversity.IMPORTANCE With the advent of advanced sequencing technology, studies of RNA viruses have shown that genetic diversity can contribute to both attenuation and virulence and the paradigm is that this is controlled by the error-prone RNA-dependent RNA polymerase (RdRp). Since wild-type yellow fever virus (YFV) strain Asibi has genetic diversity typical of a wild-type RNA virus, while 17D virus vaccine has limited diversity, it provides a unique opportunity to investigate RNA population theory in the context of a well-characterized live attenuated vaccine. Utilizing infectious clone-derived viruses, we show that genetic diversity of RNA viruses is complex and that multiple genes, including structural genes and NS2B and NS4B genes also contribute to genetic diversity. We suggest that the replication complex as a whole, rather than only RdRp, drives genetic diversity, at least for YFV.


Assuntos
Variação Genética , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , Vírus da Febre Amarela/genética , Células A549 , Humanos , Taxa de Mutação , Recombinação Genética , Genética Reversa
6.
Sci Rep ; 8(1): 13408, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194325

RESUMO

Deep sequencing of live-attenuated viral vaccines has focused on vaccines in current use. Here we report characterization of a discontinued live yellow fever (YF) vaccine associated with severe adverse events. The French neurotropic vaccine (FNV) strain of YF virus was derived empirically in 1930 by 260 passages of wild-type French viscerotropic virus (FVV) in mouse brain. The vaccine was administered extensively in French-speaking Africa until discontinuation in 1982, due to high rates of post-vaccination encephalitis in children. Using rare archive strains of FNV, viral RNAs were sequenced and analyzed by massively parallel, in silico methods. Diversity and specific population structures were compared in reference to the wild-type parental strain FVV, and between the vaccine strains themselves. Lower abundance of polymorphism content was observed for FNV strains relative to FVV. Although the vaccines were of lower diversity than FVV, heterogeneity between the vaccines was observed. Reversion to wild-type identity was variably observed in the FNV strains. Specific population structures were recovered from vaccines with neurotropic properties; loss of neurotropism in mice was associated with abundance of wild-type RNA populations. The analysis provides novel sequence evidence that FNV is genetically unstable, and that adaptation of FNV contributed to the neurotropic adverse phenotype.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo Genético , Vacina contra Febre Amarela/genética , Febre Amarela , Vírus da Febre Amarela/genética , África/epidemiologia , Animais , Criança , Pré-Escolar , Encefalomielite Aguda Disseminada/epidemiologia , Encefalomielite Aguda Disseminada/genética , Humanos , Camundongos , Análise de Sequência de DNA , Tropismo Viral/genética , Febre Amarela/epidemiologia , Febre Amarela/genética , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem , Vacina contra Febre Amarela/efeitos adversos , Vírus da Febre Amarela/patogenicidade
7.
Viruses ; 9(1)2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106841

RESUMO

Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO) have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination.


Assuntos
Vacina contra Sarampo/administração & dosagem , Sarampo/prevenção & controle , Vacinação/métodos , Animais , Erradicação de Doenças/métodos , Erradicação de Doenças/organização & administração , Saúde Global , Humanos , Sarampo/imunologia , Vacina contra Sarampo/imunologia , Organização Mundial da Saúde
8.
Sci Rep ; 6: 35819, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775001

RESUMO

The trade-off hypothesis, the current paradigm of arbovirus evolution, proposes that cycling between vertebrate and invertebrate hosts presents significant constraints on genetic change of arboviruses. Studying these constraints in mosquito-borne viruses has led to a new understanding of epizootics. The trade-off hypothesis is assumed to be applicable to tick-borne viruses too, although studies are lacking. Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the family Bunyaviridae, is a major cause of severe human disease worldwide and shows an extraordinary amount of genetic diversity compared to other arboviruses, which has been linked to increased virulence and emergence in new environments. Using a transmission model for CCHFV, utilizing the main vector tick species and mice plus next generation sequencing, we detected a substantial number of consensus-level mutations in CCHFV recovered from ticks after only a single transstadial transmission, whereas none were detected in CCHFV obtained from the mammalian host. Furthermore, greater viral intra-host diversity was detected in the tick compared to the vertebrate host. Long-term association of CCHFV with its tick host for 1 year demonstrated mutations in the viral genome become fixed over time. These findings suggest that the trade-off hypothesis may not be accurate for all arboviruses.


Assuntos
Genoma Viral/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/transmissão , Interações Hospedeiro-Patógeno/genética , Ixodidae/virologia , Animais , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Ixodidae/fisiologia , Mamíferos/virologia , Camundongos Knockout , Mutação , Ninfa/virologia , Fator de Transcrição STAT1/genética
9.
Expert Rev Vaccines ; 14(11): 1479-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366673

RESUMO

Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized historically for its immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be lifelong. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease.


Assuntos
Descoberta de Drogas/métodos , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Descoberta de Drogas/tendências , Humanos , Vacinas contra Encefalite Japonesa/imunologia , Vacinas contra Encefalite Japonesa/isolamento & purificação , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Febre Amarela/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA