Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0282397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000831

RESUMO

This study addresses transpiration in a tropical evergreen mountain forest in the Ecuadorian Andes from the leaf to the stand level, with emphasis on nocturnal plant-water relations. The stand level: Evapotranspiration (ET) measured over 12 months with the Eddy-Covariance (ECov) technique proved as the major share (79%) of water received from precipitation. Irrespective of the humid climate, the vegetation transpired day and night. On average, 15.3% of the total daily ET were due to nocturnal transpiration. Short spells of drought increased daily ET, mainly by enhanced nighttime transpiration. Following leaf transpiration rather than air temperature and atmospheric water vapor deficit, ET showed its maximum already in the morning hours. The tree level: Due to the humid climate, the total water consumption of trees was generally low. Nevertheless, xylem sap flux measurements separated the investigated tree species into a group showing relatively high and another one with low sap flux rates. The leaf level: Transpiration rates of Tapirira guianensis, a member of the high-flux-rate group, were more than twice those of Ocotea aciphylla, a representative of the group showing low sap flux rates. Representatives of the Tapirira group operated at a relatively high leaf water potential but with a considerable diurnal amplitude, while the leaves of the Ocotea group showed low water potential and small diurnal fluctuations. Overall, the Tapirira group performed anisohydrically and the Ocotea group isohydrically. Grouping of the tree species by their water relations complied with the extents of the diurnal stem circumference fluctuations. Nighttime transpiration and hydrological type: In contrast to the isohydrically performing trees of the Ocotea group, the anisohydric trees showed considerable water vapour pressure deficit (VPD)-dependent nocturnal transpiration. Therefore, we conclude that nighttime ET at the forest level is mainly sourced by the tree species with anisohydric performance.


Assuntos
Floresta Úmida , Árvores , Transpiração Vegetal , Florestas , Folhas de Planta
2.
Oecologia ; 195(3): 589-600, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515062

RESUMO

Tropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projections how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing between response traits that determine the resistance of species to environmental changes and effect traits that are relevant for species' interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research framework that uses a trait-based response-effect-framework (REF) to quantify relationships between abiotic conditions, the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Equador , Florestas
3.
Sci Rep ; 11(1): 24530, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972835

RESUMO

Biodiversity and ecosystem functions are highly threatened by global change. It has been proposed that geodiversity can be used as an easy-to-measure surrogate of biodiversity to guide conservation management. However, so far, there is mixed evidence to what extent geodiversity can predict biodiversity and ecosystem functions at the regional scale relevant for conservation planning. Here, we analyse how geodiversity computed as a compound index is suited to predict the diversity of four taxa and associated ecosystem functions in a tropical mountain hotspot of biodiversity and compare the results with the predictive power of environmental conditions and resources (climate, habitat, soil). We show that combinations of these environmental variables better explain species diversity and ecosystem functions than a geodiversity index and identified climate variables as more important predictors than habitat and soil variables, although the best predictors differ between taxa and functions. We conclude that a compound geodiversity index cannot be used as a single surrogate predictor for species diversity and ecosystem functions in tropical mountain rain forest ecosystems and is thus little suited to facilitate conservation management at the regional scale. Instead, both the selection and the combination of environmental variables are essential to guide conservation efforts to safeguard biodiversity and ecosystem functions.


Assuntos
Biodiversidade , Ecossistema , Meio Ambiente , Clima Tropical , Clima , Florestas , Modelos Teóricos , Solo
4.
Glob Chang Biol ; 26(4): 2403-2420, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957121

RESUMO

Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decision-making. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision-makers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975-2015) in the projected land-use allocation (2015-2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%-80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.

5.
Phytomedicine ; 53: 302-307, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30503101

RESUMO

BACKGROUND: With the adoption of the Convention on Biological Diversity (CBD) the 196 member countries have agreed that organisms and their derivatives are the property of the country of their origin (CBD Art.3, Art 15). While the spirit of the CBD is generally acknowledged, the ownership causes considerable problems, last not least for research which by the CBD is considered as "use of genetic (=biological) resources" (GR). Such resources include all kinds of material which might contain functional genetic units while the derivatives consist of other materials of biological origin. HYPOTHESIS: Recently, many member countries claim the right of disposal also for digital sequence information about their GR. The Nagoya Protocol (NP) to the CBD regulates access to GR in exchange for sharing benefits arising from their use. Although the main focus of the NP is on "Research and Development" for commercial purposes, many of the issues and regulations apply also to basic, non-profit oriented biodiversity research. RESULTS: According to the NP (Art. 8a), simplified access to GR shall be granted by the provider countries for non-commercial biodiversity research, and a simple research permit may thus be sufficient for research projects not requiring transfer of GR. Nevertheless, there is not yet consensus about the interpretation of the terms "simplified measures" and "basic, academic, non-profit research". Thus negotiations about access to GR for basic research are still an ad-hoc issue at the discretion of a country's relevant authority, termed "Focal Point". Because basic research is mostly financed by public money, compliance of the researcher with the international regulations is of public interest, and in the EU, additional regulations shall make this sure on the part of the researcher by an obligatory declaration of "due diligence". CONCLUSION: Apart from all legal uncertainties on both sides the provider country and the researcher, respect of legal commitments and mutual trust are indispensable for overcoming ABS-difficulties in basic research.


Assuntos
Biodiversidade , Propriedade , Pesquisa/legislação & jurisprudência , União Europeia , Consentimento Livre e Esclarecido , Cooperação Internacional/legislação & jurisprudência , Estados Unidos
6.
PLoS One ; 13(8): e0202255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30102718

RESUMO

In tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum). With increasing elevation, the competitive power of Bracken increases as shown by satellite data of the study region. Using data obtained from field measurements, the annual biomass production of both plant species, as a measure of their competitive strength, was modeled over an elevational gradient from 1800 to 2800 m. The model shows that with increasing elevation, biomass production of the two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the grass. In greenhouse experiments, the effects on plant growth of the presumed key variables of the elevational gradient, temperature and UV radiation, were separately analyzed. Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of Bracken and its effective protection from UV radiation contribute to the success of the weed on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavonoids as UV-scavengers increased with the elevation. Combining modeling with measurements in greenhouse and field allowed to explain the invasive growth of a common weed in upland pastures. The performance of Setaria decreases with elevation due to suboptimal photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.


Assuntos
Altitude , Espécies Introduzidas , Pteridium/crescimento & desenvolvimento , Setaria (Planta)/crescimento & desenvolvimento , Agricultura , Biomassa , Ácidos Cumáricos , Equador , Fotossíntese , Plantas Daninhas , Pteridium/química , Pteridium/efeitos da radiação , Setaria (Planta)/química , Setaria (Planta)/efeitos da radiação , Temperatura , Tiramina/análogos & derivados , Raios Ultravioleta
7.
Nat Commun ; 7: 11877, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27292766

RESUMO

High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services.

8.
Nat Commun ; 5: 5612, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25425182

RESUMO

Increasing demands for livelihood resources in tropical rural areas have led to progressive clearing of biodiverse natural forests. Restoration of abandoned farmlands could counter this process. However, as aims and modes of restoration differ in their ecological and socio-economic value, the assessment of achievable ecosystem functions and benefits requires holistic investigation. Here we combine the results from multidisciplinary research for a unique assessment based on a normalization of 23 ecological, economic and social indicators for four restoration options in the tropical Andes of Ecuador. A comparison of the outcomes among afforestation with native alder or exotic pine, pasture restoration with either low-input or intense management and the abandoned status quo shows that both variants of afforestation and intense pasture use improve the ecological value, but low-input pasture does not. Economic indicators favour either afforestation or intense pasturing. Both Mestizo and indigenous Saraguro settlers are more inclined to opt for afforestation.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Agricultura Florestal/economia , Pinus/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Equador , Agricultura Florestal/métodos , Árvores/crescimento & desenvolvimento
9.
AoB Plants ; 6(0)2014.
Artigo em Inglês | MEDLINE | ID: mdl-24790131

RESUMO

The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, the stimulation was overridden by root-bed volumes that restricted root growth. Maximum growth and biomass production were obtained at a root bed of 15 L at ambient and elevated CO2 concentrations. Starting with seed germination, the plants were strictly maintained under ambient or elevated CO2 until flowering. Thus, the well-known acclimation effect of growth to enhanced CO2 did not occur. The relative growth rates of EC plants exceeded those of ambient-CO2 plants only during the initial phases of germination and seedling establishment. This was sufficient for a persistently higher absolute biomass production by EC plants in non-limiting root-bed volumes. Both the size of the root bed and the CO2 concentration influenced the quantitative cytokinin patterns, particularly in the meristematic tissues of shoots, but to a smaller extent in stems, leaves and roots. In spite of the generally low cytokinin concentrations in roots, the amounts of cytokinins moving from the root to the shoot were substantially higher in high-CO2 plants. Because the cytokinin patterns of the (xylem) fluid in the stems did not match those of the shoot meristems, it is assumed that cytokinins as long-distance signals from the roots stimulate meristematic activity in the shoot apex and the sink leaves. Subsequently, the meristems are able to synthesize those phytohormones that are required for the cell cycle. Root-borne cytokinins entering the shoot appear to be one of the major control points for the integration of various environmental cues into one signal for optimized growth.

10.
Int J Biometeorol ; 54(3): 283-95, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19937454

RESUMO

Mountain pastures dominated by the pasture grass Setaria sphacelata in the Andes of southern Ecuador are heavily infested by southern bracken (Pteridium arachnoideum), a major problem for pasture management. Field observations suggest that bracken might outcompete the grass due to its competitive strength with regard to the absorption of photosynthetically active radiation (PAR). To understand the PAR absorption potential of both species, the aims of the current paper are to (1) parameterize a radiation scheme of a two-big-leaf model by deriving structural (LAI, leaf angle parameter) and optical (leaf albedo, transmittance) plant traits for average individuals from field surveys, (2) to initialize the properly parameterized radiation scheme with realistic global irradiation conditions of the Rio San Francisco Valley in the Andes of southern Ecuador, and (3) to compare the PAR absorption capabilities of both species under typical local weather conditions. Field data show that bracken reveals a slightly higher average leaf area index (LAI) and more horizontally oriented leaves in comparison to Setaria. Spectrometer measurements reveal that bracken and Setaria are characterized by a similar average leaf absorptance. Simulations with the average diurnal course of incoming solar radiation (1998-2005) and the mean leaf-sun geometry reveal that PAR absorption is fairly equal for both species. However, the comparison of typical clear and overcast days show that two parameters, (1) the relation of incoming diffuse and direct irradiance, and (2) the leaf-sun geometry play a major role for PAR absorption in the two-big-leaf approach: Under cloudy sky conditions (mainly diffuse irradiance), PAR absorption is slightly higher for Setaria while under clear sky conditions (mainly direct irradiance), the average bracken individual is characterized by a higher PAR absorption potential. (approximately 74 MJ m(-2) year(-1)). The latter situation which occurs if the maximum daily irradiance exceeds 615 W m(-2) is mainly due to the nearly orthogonal incidence of the direct solar beam onto the horizontally oriented frond area which implies a high amount of direct PAR absorption during the noon maximum of direct irradiance. Such situations of solar irradiance favoring a higher PAR absorptance of bracken occur in approximately 36% of the observation period (1998-2005). By considering the annual course of PAR irradiance in the San Francisco Valley, the clear advantage of bracken on clear days (36% of all days) is completely compensated by the slight but more frequent advantage of Setaria under overcast conditions (64% of all days). This means that neither bracken nor Setaria show a distinct advantage in PAR absorption capability under the current climatic conditions of the study area.


Assuntos
Ecossistema , Luz , Modelos Biológicos , Fotossíntese/fisiologia , Pteridium/efeitos da radiação , Setaria (Planta)/efeitos da radiação , Absorção , Aclimatação/fisiologia , Aclimatação/efeitos da radiação , Equador , Geografia , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Pteridium/crescimento & desenvolvimento , Pteridium/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Fatores de Tempo
11.
J Biosci ; 32(3): 501-10, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17536169

RESUMO

Different environmental stresses to a plant may result in similar responses at the cellular and molecular level. This is due to the fact that the impacts of the stressors trigger similar strains and downstream signal transduction chains. A good example for an unspecific response is the reaction to stressors which induce water deficiency e.g.drought, salinity and cold, especially frost. The stabilizing effect of liquid water on the membrane bilayer can be supported by compatible solutes and special proteins. At the metabolic level, osmotic adjustment by synthesis of low-molecular osmolytes (carbohydrates, betains, proline) can counteract cellular dehydration and turgor loss. Taking the example of Pinus sylvestris, changes at the level of membrane composition, and concomitantly of photosynthetic capacity during frost hardening is shown. Additionally the effect of photoperiod as measured via the phytochrome system and the effect of subfreezing temperatures on the incidence of frost hardening is discussed. Extremely hydrophilic proteins such as dehydrins are common products protecting not only the biomembranes in ripening seeds (late embryogenesis abundant proteins)but accumulate also in the shoots and roots during cold adaptation, especially in drought tolerant plants. Dehydrins are characterized by conserved amino acid motifs, called the K-,Y-or S-segments. Accumulation of dehydrins can be induced not only by drought, but also by cold,salinity,treatment with abscisic acid and methyl jasmonate. Positive effects of the overexpression of a wild chickpea (Cicer pinnatifidum) dehydrin in tobacco plants on the dehydration tolerance is shown. The presentation discusses the perception of cold and drought,the subsequent signal transduction and expression of genes and their products. Differences and similarities between the plant responses to both stressors are also discussed.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Desastres , Plantas/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
12.
Tree Physiol ; 26(8): 1043-54, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16651254

RESUMO

Fast-growing exotic trees are widely planted in the tropics to counteract deforestation; however, their patterns of water use could be detrimental to overall ecosystem productivity through their impact on ecosystem water budget. In a comparative field study on seasonal soil-plant water dynamics of two exotic species (Cupressus lusitanica Mill. and Eucalyptus globulus Labill.) and the indigenous Podocarpus falcatus (Thunb.) Mirb. in south Ethiopia, we combined a 2.5-year record for climate and soil water availability, natural-abundance oxygen isotope ratios (delta(18)O) of soil and xylem water, destructive root sampling and transpiration measurements. Soil was generally driest under C. lusitanica with its dense canopy and shallow root system, particularly following a relatively low-rainfall wet season, with the wettest soil under E. globulus. Wet season transpiration of C. lusitanica was twice that of the other species. In the dry season, P. falcatus and C. lusitanica reduced transpiration by a factor of six and two, respectively, whereas E. globulus showed a fivefold increase. In all species, there was a shift in water uptake to deeper soil layers as the dry season progressed, accompanied by relocation of live fine root biomass (LFR) of C. lusitanica and P. falcatus to deeper layers. Under P. falcatus, variability in soil matric potential, narrow delta(18)O depth gradients and high LFR indicated fast water redistribution. Subsoil water uptake was important only for E. globulus, which had low topsoil LFR and tap roots exploiting deep water. Although P. falcatus appeared better adapted to varying soil water availability than the exotic species, both conifers decreased growth substantially during dry weather. Growth of E. globulus was largely independent of topsoil water content, giving it the potential to cause substantial dry-season groundwater depletion.


Assuntos
Solo/análise , Árvores/fisiologia , Água/química , Água/metabolismo , Transporte Biológico , Clima , Cupressus/fisiologia , Etiópia , Eucalyptus/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Fatores de Tempo , Traqueófitas/fisiologia
13.
J Biosci ; 29(4): 449-59, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15625401

RESUMO

This introductory overview shows that cold, in particular frost, stresses a plant in manifold ways and that the plant's response, being injurious or adaptive, must be considered a syndrome rather than a single reaction. In the course of the year perennial plants of the temperate climate zones undergo frost hardening in autumn and dehardening in spring. Using Scots pine (Pinus sylvestris L.) as a model plant the environmental signals inducing frost hardening and dehardening, respectively, were investigated. Over 2 years the changes in frost resistance of Scots pine needles were recorded together with the annual courses of day-length and ambient temperature. Both act as environmental signals for frost hardening and dehardening. Climate chamber experiments showed that short day-length as a signal triggering frost hardening could be replaced by irradiation with far red light, while red light inhibited hardening. The involvement of phytochrome as a signal receptor could be corroborated by respective night-break experiments. More rapid frost hardening than by short day or far red treatment was achieved by applying a short period (6 h) of mild frost which did not exceed the plant's cold resistance. Both types of signals were independently effective but the rates of frost hardening were not additive. The maximal rate of hardening was - 0.93 degrees C per day and frost tolerance of less than < - 72 degrees C was achieved. For dehardening, temperature was an even more effective signal than day-length.


Assuntos
Pinus sylvestris/metabolismo , Folhas de Planta/metabolismo , Congelamento , Iluminação , Fotoperíodo , Fatores de Tempo
14.
J Biol Chem ; 278(2): 816-22, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12401791

RESUMO

We have recently discovered a protochlorophyllide (Pchlide)-based light-harvesting complex involved in chlorophyll a biosynthesis. This complex consists of the two previously identified NADPH:protochlorophyllide oxidoreductases (PORs), PORA and PORB, their natural substrates (Pchlide b and Pchlide a, respectively), plus NADPH. These are all held together in a stoichiometry of five PORA-Pchlide b-NADPH complexes and one PORB-Pchlide a-NADPH complex in the prolamellar body of etioplasts. The assembly of this novel light-harvesting POR-Pchlide complex (LHPP) requires both the proper interaction of the PORA and PORB with their cognate substrates as well as the oligomerization of the resulting POR-pigment-NADPH ternary complexes into the native, lipid-containing structure of the etioplast. In this study, we demonstrate that the conserved extra sequence that distinguishes PORA and PORB from the structurally related short-chain alcohol dehydrogenases, is dispensable for pigment binding but needed for the assembly of LHPP. As shown by in vitro mutagenesis, deleting this extra sequence gave rise to assembly-incompetent but pigment-containing PORA and PORB polypeptides.


Assuntos
Álcool Desidrogenase/química , Hordeum/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases/química , Proteínas de Plantas/química , Protoclorifilida/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Oxirredutases/metabolismo
15.
Oecologia ; 113(3): 332-340, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28307817

RESUMO

The microclimate and the adaptive significance of the tree-like plant life-form for growth in a tropical alpine environment was investigated with the pachycaul arborescent giant rosette plant, Lobelia rhynchopetalum (Hochst. A. Rich.) Hemsl. in the Bale and Simen Mountains, Ethiopia. The microclimate of plants of three height classes was examined with respect to temperature, relative humidity and the effect of wind. Although the total heat gains were rather similar, leaves of young, still stemless (acaulescent) individuals of Lobelia were subjected to a high diurnal temperature fluctuation of up to 29 K compared to a 14-K fluctuation for the leaves of an individual 3.5 m in height. During the cold nights, temperatures of the inner rosette leaves and inside leaf buds of caulescent plants were 4-5 K above air temperature, while corresponding temperatures of acaulescent individuals were 1-2 K below air temperature. The inner temperature of the stem tissue was higher than the surface temperature of the stem by about 5 K for most of the cold night. The annual rates of increment in whole plant, stem and rosette height, and stem diameter of L. rhynchopetalum showed that the young, still acaulescent individuals, with an annual increment of 5.6 cm in plant height, had the lowest growth rate, compared to 12.1 and 22.1 cm for caulescent life-forms. The results show that the most important advantage gained by the tree-like life-form of adult L. rhynchopetalum is probably a more favourable microclimate in which the strong diurnal temperature fluctuations at the ground are mitigated and nocturnal temperatures do not drop below freezing point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA