Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1279041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942081

RESUMO

Real-time quantitative PCR (qPCR) has been widely used to quantify gene copy numbers in microbial ecology. Despite its simplicity and straightforwardness, establishing qPCR assays is often impeded by the tedious process of producing qPCR standards by cloning the target DNA into plasmids. Here, we designed double-stranded synthetic DNA fragments from consensus sequences as qPCR standards by aligning microbial gene sequences (10-20 sequences per gene). Efficiency of standards from synthetic DNA was compared with plasmid standards by qPCR assays for different phylogenetic marker and functional genes involved in carbon (C) and nitrogen (N) cycling, tested with DNA extracted from a broad range of soils. Results showed that qPCR standard curves using synthetic DNA performed equally well to those from plasmids for all the genes tested. Furthermore, gene copy numbers from DNA extracted from soils obtained by using synthetic standards or plasmid standards were comparable. Our approach therefore demonstrates that a synthetic DNA fragment as qPCR standard provides comparable sensitivity and reliability to a traditional plasmid standard, while being more time- and cost-efficient.

2.
ISME J ; 17(11): 1993-2002, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37684524

RESUMO

Wastewater treatment plants (WWTPs) are key sources of antimicrobial resistance genes (ARGs) that could influence the resistomes of microbial communities in various habitats of the receiving river ecosystem. However, it is currently unknown which habitats are most impacted and whether ARGs, like certain chemical contaminants, could be accumulated or enriched in the river ecosystem. We conducted a systematic metagenomic survey on the antibiotic resistomes of WWTP effluent, four riverine habitats (water, suspended particles, sediment, epilithic biofilm), and freshwater amphipod gut microbiomes. The impact of WWTP effluent on the downstream habitats was assessed in nine Swiss rivers. While there were significant differences in resistomes across habitats, the wastewater resistome was more similar to the resistome of receiving river water than to the resistomes of other habitats, and river water was the habitat most strongly impacted by the WWTPs effluent. The sulfonamide, beta-lactam, and aminoglycoside resistance genes were among the most abundant ARGs in the WWTP effluents, and especially aadA, sul1, and class A beta-lactamase genes showed significantly increased abundance in the river water of downstream compared to upstream locations (p < 0.05). However, this was not the case for the sediment, biofilm, and amphipod gut habitats. Accordingly, evidence for accumulation or enrichment of ARGs through the riverine food web was not identified. Our study suggests that monitoring riverine antimicrobial resistance determinants could be conducted using "co-occurrence" of aadA, sul1, and class A beta-lactamase genes as an indicator of wastewater-related pollution and should focus on the water as the most affected habitat.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Águas Residuárias , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Água , beta-Lactamases/genética
3.
Water Res ; 208: 117827, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794019

RESUMO

Untreated combined sewage (bypass) is often discharged by wastewater treatment plants to receiving rivers during stormwater events, where it may contribute to increased levels of antibiotic resistance genes (ARGs) and multi-resistance risk factors (multi-resistant bacteria and multi-resistance genomic determinants (MGDs)) in the receiving water. Other contamination sources, such as soil runoff and resuspended river sediment could also play a role during stormwater events. Here we report on stormwater event-based sampling campaigns to determine temporal dynamics of ARGs and multi-resistance risk factors in bypass, treated effluent, and the receiving river, as well as complimentary data on catchment soils and surface sediments. Both indicator ARGs (qPCR) and resistome (ARG profiles revealed by metagenomics) indicated bypass as the main contributor to the increased levels of ARGs in the river during stormwater events. Furthermore, we showed for the first time that the risk of exposure to bypass-borne multi-resistance risk factors increase under stormwater events and that many of these MGDs were plasmid associated and thus potentially mobile. In addition, elevated resistance risk factors persisted for some time (up to 22 h) in the receiving water after stormwater events, likely due to inputs from distributed overflows in the catchment. This indicates temporal dynamics should be considered when interpreting the risks of exposure to resistance from event-based contamination. We propose that reducing bypass from wastewater treatment plants may be an important intervention option for reducing dissemination of antibiotic resistance.


Assuntos
Rios , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Fatores de Risco , Suíça
4.
Water Res ; 197: 117050, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784606

RESUMO

River networks are one of the main routes by which the public could be exposed to environmental sources of antibiotic resistance, that may be introduced e.g. via treated wastewater. In this study, we applied a comprehensive integrated analysis encompassing mass-flow concepts, chemistry, bacterial plate counts, resistance gene quantification and shotgun metagenomics to track the fate of the resistome (collective antibiotic resistance genes (ARGs) in a microbial community) of treated wastewater in two Swiss rivers at the kilometer scale. The levels of certain ARGs and the class 1 integron integrase gene (intI1) commonly associated with anthropogenic sources of ARGs decreased quickly over short distances (2-2.5 km) downstream of wastewater discharge points. Mass-flow analysis based on conservative tracers suggested this decrease was attributable mainly to dilution but ARG loadings frequently also decreased (e.g., 55.0-98.5 % for ermB and tetW) over the longest studied distances (6.8 and 13.7 km downstream). Metagenomic analysis confirmed that ARG of wastewater-origin did not persist in rivers after 5 ~ 6.8 km downstream distance. sul1 and intI1 levels and loadings were more variable and even increased sharply at 5 ~ 6.8 km downstream distance on one occasion. While input from agriculture and in-situ positive selection pressure for organisms carrying ARGs cannot be excluded, in-system growth of biomass is a more probable explanation. The potential for direct human exposure to the resistome of wastewater-origin thus appeared to typically abate rapidly in the studied rivers. However, the riverine aquatic resistome was also dynamic, as evidenced by the increase of certain gene markers downstream, without obvious sources of anthropogenic contamination. This study provides new insight into drivers of riverine resistomes and pinpoints key monitoring targets indicative of where human sources and exposures are likely to be most acute.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Humanos , Rios , Águas Residuárias
5.
Front Microbiol ; 11: 579427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178162

RESUMO

In stratified lakes, methane-oxidizing bacteria (MOB) are strongly mitigating methane fluxes to the atmosphere by consuming methane entering the water column from the sediments. MOB communities in lakes are diverse and vertically structured, but their spatio-temporal dynamics along the water column as well as physico-chemical parameters and interactions with other bacterial species that drive the community assembly have so far not been explored in depth. Here, we present a detailed investigation of the MOB and bacterial community composition and a large set of physico-chemical parameters in a shallow, seasonally stratified, and sub-alpine lake. Four highly resolved vertical profiles were sampled in three different years and during various stages of development of the stratified water column. Non-randomly assembled MOB communities were detected in all compartments. We could identify methane and oxygen gradients and physico-chemical parameters like pH, light, available copper and iron, and total dissolved nitrogen as important drivers of the MOB community structure. In addition, MOB were well-integrated into a bacterial-environmental network. Partial redundancy analysis of the relevance network of physico-chemical variables and bacteria explained up to 84% of the MOB abundances. Spatio-temporal MOB community changes were 51% congruent with shifts in the total bacterial community and 22% of variance in MOB abundances could be explained exclusively by the bacterial community composition. Our results show that microbial interactions may play an important role in structuring the MOB community along the depth gradient of stratified lakes.

6.
Environ Int ; 144: 106035, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835921

RESUMO

The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ß-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status.


Assuntos
Cefotaxima , Purificação da Água , Antibacterianos/farmacologia , Ásia , Austrália , Cefotaxima/farmacologia , Europa (Continente) , América do Norte , Inquéritos e Questionários , Águas Residuárias
7.
ISME J ; 13(2): 346-360, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30250051

RESUMO

Wastewater treatment plants (WWTPs) are implicated as hotspots for the dissemination of antibacterial resistance into the environment. However, the in situ processes governing removal, persistence, and evolution of resistance genes during wastewater treatment remain poorly understood. Here, we used quantitative metagenomic and metatranscriptomic approaches to achieve a broad-spectrum view of the flow and expression of genes related to antibacterial resistance to over 20 classes of antibiotics, 65 biocides, and 22 metals. All compartments of 12 WWTPs share persistent resistance genes with detectable transcriptional activities that were comparatively higher in the secondary effluent, where mobility genes also show higher relative abundance and expression ratios. The richness and abundance of resistance genes vary greatly across metagenomes from different treatment compartments, and their relative and absolute abundances correlate with bacterial community composition and biomass concentration. No strong drivers of resistome composition could be identified among the chemical stressors analyzed, although the sub-inhibitory concentration (hundreds of ng/L) of macrolide antibiotics in wastewater correlates with macrolide and vancomycin resistance genes. Contig-based analysis shows considerable co-localization between resistance and mobility genes and implies a history of substantial horizontal resistance transfer involving human bacterial pathogens. Based on these findings, we propose future inclusion of mobility incidence (M%) and host pathogenicity of antibiotic resistance genes in their quantitative health risk ranking models with an ultimate goal to assess the biological significance of wastewater resistomes with regard to disease control in humans or domestic livestock.


Assuntos
Farmacorresistência Bacteriana/genética , Microbiota , Águas Residuárias/microbiologia , Antibacterianos/análise , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Transferência Genética Horizontal , Genes Bacterianos , Metagenoma , Metagenômica , Transcriptoma , Regulação para Cima , Eliminação de Resíduos Líquidos , Águas Residuárias/química
8.
PeerJ ; 6: e4989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942682

RESUMO

Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination of tet(W) and sul1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genus Clostridium was identified as a potential specific vector for the dissemination of tet(W), due to a strong correlation with tet(W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment.

9.
ISME J ; 12(5): 1344-1359, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29416124

RESUMO

Here we used flow cytometry (FCM) and filtration paired with amplicon sequencing to determine the abundance and composition of small low nucleic acid (LNA)-content bacteria in a variety of freshwater ecosystems. We found that FCM clusters associated with LNA-content bacteria were ubiquitous across several ecosystems, varying from 50 to 90% of aquatic bacteria. Using filter-size separation, we separated small LNA-content bacteria (passing 0.4 µm filter) from large bacteria (captured on 0.4 µm filter) and characterized communities with 16S amplicon sequencing. Small and large bacteria each represented different sub-communities within the ecosystems' community. Moreover, we were able to identify individual operational taxonomical units (OTUs) that appeared exclusively with small bacteria (434 OTUs) or exclusively with large bacteria (441 OTUs). Surprisingly, these exclusive OTUs clustered at the phylum level, with many OTUs appearing exclusively with small bacteria identified as candidate phyla (i.e. lacking cultured representatives) and symbionts. We propose that LNA-content bacteria observed with FCM encompass several previously characterized categories of bacteria (ultramicrobacteria, ultra-small bacteria, candidate phyla radiation) that share many traits including small size and metabolic dependencies on other microorganisms.


Assuntos
Bactérias/classificação , Água Doce/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , Ecossistema , Ácidos Nucleicos/análise , Filogenia
10.
PeerJ ; 6: e4197, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29312823

RESUMO

The introduction of antibiotics for both medical and non-medical purposes has had a positive effect on human welfare and agricultural output in the past century. However, there is also an important ecological legacy regarding the use of antibiotics and the consequences of increased levels of these compounds in the environment as a consequence of their use and disposal. This legacy was investigated by quantifying two antibiotic resistance genes (ARG) conferring resistance to tetracycline (tet(W)) and sulfonamide (sul1) in bacterial seed bank DNA in sediments. The industrial introduction of antibiotics caused an abrupt increase in the total abundance of tet(W) and a steady increase in sul1. The abrupt change in tet(W) corresponded to an increase in relative abundance from ca. 1960 that peaked around 1976. This pattern of accumulation was highly correlated with the abundance of specific members of the seed bank community belonging to the phylum Firmicutes. In contrast, the relative abundance of sul1 increased after 1976. This correlated with a taxonomically broad spectrum of bacteria, reflecting sul1 dissemination through horizontal gene transfer. The accumulation patterns of both ARGs correspond broadly to the temporal scale of medical antibiotic use. Our results show that the bacterial seed bank can be used to look back at the historical usage of antibiotics and resistance prevalence.

11.
Environ Sci Technol ; 51(12): 6857-6866, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28509546

RESUMO

Ammonia oxidation decreases the pH in wastewaters where alkalinity is limited relative to total ammonia. The activity of ammonia oxidizing bacteria (AOB), however, typically decreases with pH and often ceases completely in slightly acidic wastewaters. Nevertheless, nitrification at low pH has been reported in reactors treating human urine, but it has been unclear which organisms are involved. In this study, we followed the population dynamics of ammonia oxidizing organisms and reactor performance in synthetic fully hydrolyzed urine as the pH decreased over time in response to a decrease in the loading rate. Populations of the ß-proteobacterial Nitrosomonas europaea lineage were abundant at the initial pH close to 6, but the growth of a possibly novel Nitrosococcus-related AOB genus decreased the pH to the new level of 2.2, challenging the perception that nitrification is inhibited entirely at low pH values, or governed exclusively by ß-proteobacterial AOB or archaea. With the pH shift, nitrite oxidizing bacteria were not further detected, but nitrous acid (HNO2) was still removed through chemical decomposition to nitric oxide (NO) and nitrate. The growth of acid-tolerant γ-proteobacterial AOB should be prevented, by keeping the pH above 5.4, which is a typical pH limit for the N. europaea lineage. Otherwise, the microbial community responsible for high-rate nitrification can be lost, and strong emissions of hazardous volatile nitrogen compounds such as NO are likely.


Assuntos
Amônia , Bactérias , Nitrificação , Águas Residuárias , Concentração de Íons de Hidrogênio , Oxirredução
12.
Perfusion ; 21(2): 105-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16615688

RESUMO

All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.


Assuntos
Ponte Cardiopulmonar/instrumentação , Temperatura Alta , Teste de Materiais , Oxigenadores de Membrana/normas , Pressão do Ar , Ponte Cardiopulmonar/métodos , Falha de Equipamento , Análise de Falha de Equipamento/métodos , Manometria , Equipamentos Cirúrgicos/normas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA