Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 109(3): 915-928, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675512

RESUMO

Megakaryocytes (MK) undergo extensive cytoskeletal rearrangements as they give rise to platelets. While cortical microtubule sliding has been implicated in proplatelet formation, the role of the actin cytoskeleton in proplatelet elongation is less understood. It is assumed that actin filament reorganization is important for platelet generation given that mouse models with mutations in actin-associated proteins exhibit thrombocytopenia. However, due to the essential role of the actin network during MK development, a differential understanding of the contribution of the actin cytoskeleton on proplatelet release is lacking. Here, we reveal that inhibition of actin polymerization impairs the formation of elaborate proplatelets by hampering proplatelet extension and bead formation along the proplatelet shaft, which was mostly independent of changes in cortical microtubule sliding. We identify Cdc42 and its downstream effectors, septins, as critical regulators of intracellular actin dynamics in MK, inhibition of which, similarly to inhibition of actin polymerization, impairs proplatelet movement and beading. Super-resolution microscopy revealed a differential association of distinctive septins with the actin and microtubule cytoskeleton, respectively, which was disrupted upon septin inhibition and diminished intracellular filamentous actin dynamics. In vivo, septins, similarly to F-actin, were subject to changes in expression upon enforcing proplatelet formation through prior platelet depletion. In summary, we demonstrate that a Cdc42/septin axis is not only important for MK maturation and polarization, but is further required for intracellular actin dynamics during proplatelet formation.


Assuntos
Actinas , Megacariócitos , Animais , Camundongos , Septinas , Plaquetas , Citoesqueleto de Actina
2.
Blood ; 143(3): 272-278, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37879046

RESUMO

ABSTRACT: Megakaryocytes (MKs) generate thousands of platelets over their lifespan. The roles of platelets in infection and inflammation has guided an interest to the study of extramedullary thrombopoiesis and therefore MKs have been increasingly reported within the spleen and lung. However, the relative abundance of MKs in these organs compared to the bone marrow and the scale of their contribution to the platelet pool in a steady state remain controversial. We investigated the relative abundance of MKs in the adult murine bone marrow, spleen, and lung using whole-mount light-sheet and quantitative histological imaging, flow cytometry, intravital imaging, and an assessment of single-cell RNA sequencing (scRNA-seq) repositories. Flow cytometry revealed significantly higher numbers of hematopoietic stem and progenitor cells and MKs in the murine bone marrow than in spleens or perfused lungs. Two-photon intravital and light-sheet microscopy, as well as quantitative histological imaging, confirmed these findings. Moreover, ex vivo cultured MKs from the bone marrow subjected to static or microfluidic platelet production assays had a higher capacity for proplatelet formation than MKs from other organs. Analysis of previously published murine and human scRNA-seq data sets revealed that only a marginal fraction of MK-like cells can be found within the lung and most likely only marginally contribute to platelet production in the steady state.


Assuntos
Medula Óssea , Trombopoese , Camundongos , Humanos , Animais , Trombopoese/genética , Plaquetas , Megacariócitos , Baço
3.
bioRxiv ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36798332

RESUMO

Lipids contribute to hematopoiesis and membrane properties and dynamics, however, little is known about the role of lipids in megakaryopoiesis. Here, a lipidomic analysis of megakaryocyte progenitors, megakaryocytes, and platelets revealed a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake and de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in thrombocytopenia. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production, and that changes in dietary fatty acids may be a novel and viable target to modulate platelet counts.

4.
Sci Adv ; 8(41): eabo5224, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223471

RESUMO

Despite abundant research demonstrating that platelets can promote tumor cell metastasis, whether primary tumors affect platelet-producing megakaryocytes remains understudied. In this study, we used a spontaneous murine model of breast cancer to show that tumor burden reduced megakaryocyte number and size and disrupted polyploidization. Single-cell RNA sequencing demonstrated that megakaryocytes from tumor-bearing mice exhibit a pro-inflammatory phenotype, epitomized by increased Ctsg, Lcn2, S100a8, and S100a9 transcripts. Protein S100A8/A9 and lipocalin-2 levels were also increased in platelets, suggesting that tumor-induced alterations to megakaryocytes are passed on to their platelet progeny, which promoted in vitro tumor cell invasion and tumor cell lung colonization to a greater extent than platelets from wild-type animals. Our study is the first to demonstrate breast cancer-induced alterations in megakaryocytes, leading to qualitative changes in platelet content that may feedback to promote tumor metastasis.


Assuntos
Megacariócitos , Neoplasias , Animais , Plaquetas/metabolismo , Catepsina G/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Lipocalina-2/metabolismo , Camundongos , Neoplasias/metabolismo
5.
Blood Adv ; 6(17): 5184-5197, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35819450

RESUMO

Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.


Assuntos
Megacariócitos , Trombocitopenia , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Microtúbulos/metabolismo , Trombocitopenia/genética , Tubulina (Proteína)/metabolismo
6.
Blood ; 139(14): 2100-2101, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389441

Assuntos
Plaquetas , Ticlopidina
7.
Blood Adv ; 6(10): 3155-3161, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35134123

RESUMO

G6b-B is a megakaryocyte lineage-specific immunoreceptor tyrosine-based inhibition motif-containing receptor, essential for platelet homeostasis. Mice with a genomic deletion of the entire Mpig6b locus develop severe macrothrombocytopenia and myelofibrosis, which is reflected in humans with null mutations in MPIG6B. The current model proposes that megakaryocytes lacking G6b-B develop normally, whereas proplatelet release is hampered, but the underlying molecular mechanism remains unclear. We report on a spontaneous recessive single nucleotide mutation in C57BL/6 mice, localized within the intronic region of the Mpig6b locus that abolishes G6b-B expression and reproduces macrothrombocytopenia, myelofibrosis, and osteosclerosis. As the mutation is based on a single-nucleotide exchange, Mpig6bmut mice represent an ideal model to study the role of G6b-B. Megakaryocytes from these mice were smaller, displayed a less-developed demarcation membrane system, and had a reduced expression of receptors. RNA sequencing revealed a striking global reduction in the level of megakaryocyte-specific transcripts, in conjunction with decreased protein levels of the transcription factor GATA-1 and impaired thrombopoietin signaling. The reduced number of mature MKs in the bone marrow was corroborated on a newly developed Mpig6b-null mouse strain. Our findings highlight an unexpected essential role of G6b-B in the early differentiation within the megakaryocytic lineage.


Assuntos
Mielofibrose Primária , Trombocitopenia , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos/metabolismo , Mielofibrose Primária/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo
8.
Blood ; 139(22): 3245-3254, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582554

RESUMO

Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor ß1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.


Assuntos
Megacariócitos , Trombopoese , Plaquetas/metabolismo , Medula Óssea , Células-Tronco Hematopoéticas , Megacariócitos/metabolismo , Trombopoese/genética
9.
Blood Adv ; 4(10): 2124-2134, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32407474

RESUMO

Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function. However, recent studies in yeast have indicated a critical synergism between Twf1 and Cof1 in the regulation of actin dynamics. We therefore investigated platelet biogenesis and function in mice lacking both Twf1 and Cof1 in the MK lineage. In contrast to single deficiency in either protein, Twf1/Cof1 double deficiency (DKO) resulted in a severe macrothrombocytopenia and dramatically increased MK numbers in bone marrow and spleen. DKO MKs exhibited defective proplatelet formation in vitro and in vivo as well as impaired spreading and altered assembly of podosome-like structures on collagen and fibrinogen in vitro. These defects were associated with aberrant F-actin accumulation and, remarkably, the formation of hyperstable MT, which appears to be caused by dysregulation of the actin- and MT-binding proteins mDia1 and adenomatous polyposis coli. Surprisingly, the mild functional defects described for Cof1-deficient platelets were only slightly aggravated in DKO platelets suggesting that both proteins are largely dispensable for platelet function in the peripheral blood. In summary, these findings reveal critical redundant functions of Cof1 and Twf1 in ensuring balanced actin/microtubule crosstalk during thrombopoiesis in mice and possibly humans.


Assuntos
Actinas , Plaquetas , Cofilina 1 , Megacariócitos , Proteínas dos Microfilamentos , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Cofilina 1/sangue , Megacariócitos/citologia , Camundongos , Proteínas dos Microfilamentos/sangue , Microtúbulos , Trombopoese
10.
J Immunol ; 200(8): 2529-2534, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29581357

RESUMO

Cation homeostasis, in relation to various immune-suppressive diseases, is a novel field of investigation. Recently, patients with a loss-of-function mutation in magnesium transporter 1 (MAGT1) were reported to present a dysregulated Mg2+ homeostasis in T lymphocytes. Using Magt1-knockout mice (Magt1-/y ), we show that Mg2+ homeostasis was impaired in Magt1-/y B cells and Ca2+ influx was increased after BCR stimulation, whereas T and NK cell function was unaffected. Consequently, mutant B cells displayed an increased phosphorylation of BCR-related proteins differentially affecting protein kinase C activation. These in vitro findings translated into increased frequencies of CD19+ B cells and marginal zone B cells and decreased frequencies of plasma cells among CD45+ splenocytes in vivo. Altogether, our study demonstrates for the first time, to our knowledge, that abolished MAGT1 function causes imbalanced cation homeostasis and developmental responses in B cells. Therefore, this study might contribute to a further understanding of B cell-related pathologies.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Cátions/metabolismo , Hematopoese/fisiologia , Homeostase/fisiologia , Animais , Antígenos CD19/metabolismo , Cálcio/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/fisiologia , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Linfócitos T/fisiologia
11.
Arterioscler Thromb Vasc Biol ; 38(2): 344-352, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29146750

RESUMO

OBJECTIVE: TRPM7 (transient receptor potential cation channel, subfamily M, member 7) is a ubiquitously expressed bifunctional protein comprising a transient receptor potential channel segment linked to a cytosolic α-type serine/threonine protein kinase domain. TRPM7 forms a constitutively active Mg2+ and Ca2+ permeable channel, which regulates diverse cellular processes in both healthy and diseased conditions, but the physiological role of TRPM7 kinase remains largely unknown. APPROACH AND RESULTS: Here we show that point mutation in TRPM7 kinase domain deleting the kinase activity in mice (Trpm7R/R ) causes a marked signaling defect in platelets. Trpm7R/R platelets showed an impaired PIP2 (phosphatidylinositol-4,5-bisphosphate) metabolism and consequently reduced Ca2+ mobilization in response to stimulation of the major platelet receptors GPVI (glycoprotein VI), CLEC-2 (C-type lectin-like receptor), and PAR (protease-activated receptor). Altered phosphorylation of Syk (spleen tyrosine kinase) and phospholipase C γ2 and ß3 accounted for these global platelet activation defects. In addition, direct activation of STIM1 (stromal interaction molecule 1) with thapsigargin revealed a defective store-operated Ca2+ entry mechanism in the mutant platelets. These defects translated into an impaired platelet aggregate formation under flow and protection of the mice from arterial thrombosis and ischemic stroke in vivo. CONCLUSIONS: Our results identify TRPM7 kinase as a key modulator of phospholipase C signaling and store-operated Ca2+ entry in platelets. The protection of Trpm7R/R mice from acute ischemic disease without developing intracranial hemorrhage indicates that TRPM7 kinase might be a promising antithrombotic target.


Assuntos
Arteriopatias Oclusivas/sangue , Plaquetas/metabolismo , Sinalização do Cálcio , Cálcio/sangue , Infarto da Artéria Cerebral Média/sangue , Canais de Cátion TRPM/sangue , Trombose/sangue , Animais , Arteriopatias Oclusivas/genética , Arteriopatias Oclusivas/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Lectinas Tipo C/sangue , Camundongos Mutantes , Fosfatidilinositol 4,5-Difosfato/sangue , Fosfolipase C beta/sangue , Fosfolipase C gama/sangue , Fosforilação , Glicoproteínas da Membrana de Plaquetas/metabolismo , Mutação Puntual , Receptores Ativados por Proteinase/sangue , Molécula 1 de Interação Estromal/sangue , Sinaptofisina/sangue , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Trombose/genética , Trombose/patologia
12.
Blood ; 130(20): 2224-2228, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-28835437

RESUMO

C-type lectin-like receptor 2 (CLEC-2) is a platelet receptor that is critical during development in blood-lymph separation and implicated in thrombus stability in thrombosis and hemostasis. It is the only known platelet activatory receptor that participates in both of these aspects of platelet function, and it is the only one to signal through a hemi-immunoreceptor tyrosine-based activation motif (hemITAM). Current investigations into the function of CLEC-2 in vivo have focused on knockout (KO) studies in which both the receptor and its signaling are deleted, making it impossible to explore the possible signaling-independent functions of the receptor, which are indicated by its only known physiological ligand, podoplanin, being an integral membrane protein. In this report, we present a novel knockin mouse model that maintains the expression of a CLEC-2 receptor that cannot signal through its hemITAM (Y7A KI). Remarkably, this mouse phenocopies the blood-lymphatic mixing and lethality of CLEC-2 KO models, but not their hemostatic/thrombotic defect. However, treatment of Y7A KI mice with Fab' fragments of the function-blocking anti-CLEC-2 antibody, INU1, resulted in a thrombus formation defect in vivo and ex vivo, revealing a hemITAM signaling-independent role for CLEC-2 in hemostasis and thrombosis.


Assuntos
Hemostasia , Lectinas Tipo C/fisiologia , Transdução de Sinais , Trombose , Animais , Plaquetas/metabolismo , Técnicas de Introdução de Genes , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Lectinas Tipo C/genética , Sistema Linfático/patologia , Camundongos , Ativação Plaquetária
13.
Blood ; 130(15): 1746-1756, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28743718

RESUMO

Regulated reorganization of the actin cytoskeleton is a prerequisite for proper platelet production and function. Consequently, defects in proteins controlling actin dynamics have been associated with platelet disorders in humans and mice. Twinfilin 2a (Twf2a) is a small actin-binding protein that inhibits actin filament assembly by sequestering actin monomers and capping filament barbed ends. Moreover, Twf2a binds heterodimeric capping proteins, but the role of this interaction in cytoskeletal dynamics has remained elusive. Even though Twf2a has pronounced effects on actin dynamics in vitro, only little is known about its function in vivo. Here, we report that constitutive Twf2a-deficient mice (Twf2a-/-) display mild macrothrombocytopenia due to a markedly accelerated platelet clearance in the spleen. Twf2a-/- platelets showed enhanced integrin activation and α-granule release in response to stimulation of (hem) immunoreceptor tyrosine-based activation motif (ITAM) and G-protein-coupled receptors, increased adhesion and aggregate formation on collagen I under flow, and accelerated clot retraction and spreading on fibrinogen. In vivo, Twf2a deficiency resulted in shortened tail bleeding times and faster occlusive arterial thrombus formation. The hyperreactivity of Twf2a-/- platelets was attributed to enhanced actin dynamics, characterized by an increased activity of n-cofilin and profilin 1, leading to a thickened cortical cytoskeleton and hence sustained integrin activation by limiting calpain-mediated integrin inactivation. In summary, our results reveal the first in vivo functions of mammalian Twf2a and demonstrate that Twf2a-controlled actin rearrangements dampen platelet activation responses in a n-cofilin- and profilin 1-dependent manner, thereby indirectly regulating platelet reactivity and half-life in mice.


Assuntos
Plaquetas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Apoptose , Artérias/patologia , Integrinas/metabolismo , Camundongos , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA