Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664566

RESUMO

How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. Here we investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner, qualitatively agree with our data. We speculate that monkey-bar mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

2.
Biochem Soc Trans ; 52(1): 423-429, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38329186

RESUMO

Extracts from Drosophila preblastoderm embryos (DREX) form the basis of a powerful in vitro chromatin reconstitution system that assembles entire genomes into complex chromatin with physiological nucleosome spacing and polymer condensation. As the zygotic genome has not yet been activated in preblastoderm embryos, the reconstitution extract lacks endogenous transcription factors (TFs) and the RNA polymerase machinery. At the same time, it contains high levels of ATP-dependent nucleosome sliding enzymes that render the reconstituted chromatin dynamic. The naïve chromatin can be used to determine the intrinsic DNA binding properties of exogenous, usually recombinant TFs (or DNA binding proteins in general) in a complex chromatin context. Recent applications of the system include the description of cooperation and competition of Drosophila pioneer TFs for composite binding sites, and the characterization of nucleosome interactions of mammalian pioneer TFs in the heterologous system.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Nucleossomos , Drosophila/metabolismo , Genômica , Mamíferos/metabolismo
3.
Nucleic Acids Res ; 52(9): 4889-4905, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38407474

RESUMO

Acetylation of lysine 16 of histone H4 (H4K16ac) stands out among the histone modifications, because it decompacts the chromatin fiber. The metazoan acetyltransferase MOF (KAT8) regulates transcription through H4K16 acetylation. Antibody-based studies had yielded inconclusive results about the selectivity of MOF to acetylate the H4 N-terminus. We used targeted mass spectrometry to examine the activity of MOF in the male-specific lethal core (4-MSL) complex on nucleosome array substrates. This complex is part of the Dosage Compensation Complex (DCC) that activates X-chromosomal genes in male Drosophila. During short reaction times, MOF acetylated H4K16 efficiently and with excellent selectivity. Upon longer incubation, the enzyme progressively acetylated lysines 12, 8 and 5, leading to a mixture of oligo-acetylated H4. Mathematical modeling suggests that MOF recognizes and acetylates H4K16 with high selectivity, but remains substrate-bound and continues to acetylate more N-terminal H4 lysines in a processive manner. The 4-MSL complex lacks non-coding roX RNA, a critical component of the DCC. Remarkably, addition of RNA to the reaction non-specifically suppressed H4 oligo-acetylation in favor of specific H4K16 acetylation. Because RNA destabilizes the MSL-nucleosome interaction in vitro we speculate that RNA accelerates enzyme-substrate turn-over in vivo, thus limiting the processivity of MOF, thereby increasing specific H4K16 acetylation.


Assuntos
Proteínas de Drosophila , Histona Acetiltransferases , Histonas , Lisina , Acetilação , Histonas/metabolismo , Animais , Masculino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Lisina/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Nucleossomos/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Nucleares
4.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106060

RESUMO

How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. We investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner qualitatively agree with our data. We speculate that 'monkey-bar' mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

5.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37989319

RESUMO

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Assuntos
Proteínas de Drosophila , RNA Helicases , Animais , Humanos , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase , RNA/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/genética , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 51(17): 9039-9054, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37602401

RESUMO

MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/genética
7.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
8.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688487

RESUMO

The evolution of brain complexity correlates with an increased expression of long, noncoding (lnc) RNAs in neural tissues. Although prominent examples illustrate the potential of lncRNAs to scaffold and target epigenetic regulators to chromatin loci, only few cases have been described to function during brain development. We present a first functional characterization of the lncRNA LINC01322, which we term RUS for "RNA upstream of Slitrk3." The RUS gene is well conserved in mammals by sequence and synteny next to the neurodevelopmental gene Slitrk3. RUS is exclusively expressed in neural cells and its expression increases during neuronal differentiation of mouse embryonic cortical neural stem cells. Depletion of RUS locks neuronal precursors in an intermediate state towards neuronal differentiation resulting in arrested cell cycle and increased apoptosis. RUS associates with chromatin in the vicinity of genes involved in neurogenesis, most of which change their expression upon RUS depletion. The identification of a range of epigenetic regulators as specific RUS interactors suggests that the lncRNA may mediate gene activation and repression in a highly context-dependent manner.


Assuntos
RNA Longo não Codificante , Animais , Cromatina/genética , Cromatina/metabolismo , Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Neurogênese/genética , Neurônios/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Nucleic Acids Res ; 49(13): 7602-7617, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34181732

RESUMO

Metazoan transcription factors distinguish their response elements from a large excess of similar sequences. We explored underlying principles of DNA shape read-out and factor cooperativity in chromatin using a unique experimental system. We reconstituted chromatin on Drosophila genomes in extracts of preblastoderm embryos, mimicking the naïve state of the zygotic genome prior to developmental transcription activation. We then compared the intrinsic binding specificities of three recombinant transcription factors, alone and in combination, with GA-rich recognition sequences genome-wide. For MSL2, all functional elements reside on the X chromosome, allowing to distinguish physiological elements from non-functional 'decoy' sites. The physiological binding profile of MSL2 is approximated through interaction with other factors: cooperativity with CLAMP and competition with GAF, which sculpts the profile by occluding non-functional sites. An extended DNA shape signature is differentially read out in chromatin. Our results reveal novel aspects of target selection in a complex chromatin environment.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Sistema Livre de Células , DNA/química , DNA/metabolismo , Drosophila/embriologia , Drosophila/genética , Genoma de Inseto , Genômica , Histonas/metabolismo , Masculino , Ligação Proteica , Cromossomo X
10.
Genes Dev ; 35(13-14): 1055-1070, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34140353

RESUMO

The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromossomos Sexuais/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
11.
Bio Protoc ; 11(5): e3946, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33796620

RESUMO

RNA-protein interactions are often mediated by dedicated canonical RNA binding domains. However, interactions through non-canonical domains with unknown specificity are increasingly observed, raising the question how RNA targets are recognized. Knowledge of the intrinsic RNA binding specificity contributes to the understanding of target selectivity and function of an individual protein. The presented in vitro RNA immunoprecipitation assay (vitRIP) uncovers intrinsic RNA binding specificities of isolated proteins using the total cellular RNA pool as a library. Total RNA extracted from cells or tissues is incubated with purified recombinant proteins, RNA-protein complexes are immunoprecipitated and bound transcripts are identified by deep sequencing or quantitative RT-PCR. Enriched RNA classes and the nucleotide frequency in these RNAs inform on the intrinsic specificity of the recombinant protein. The simple and versatile protocol can be adapted to other RNA binding proteins and total RNA libraries from any cell type or tissue. Graphic abstract: Figure 1. Schematic of the in vitro RNA immunoprecipitation (vitRIP) protocol.

12.
Curr Opin Cell Biol ; 70: 1-9, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33217681

RESUMO

Histone variants are a universal means to alter the biochemical properties of nucleosomes, implementing local changes in chromatin structure. H2A.Z, one of the most conserved histone variants, is incorporated into chromatin by SWR1-type nucleosome remodelers. Here, we summarize recent advances toward understanding the transcription-regulatory roles of H2A.Z and of the remodeling enzymes that govern its dynamic chromatin incorporation. Tight transcriptional control guaranteed by H2A.Z nucleosomes depends on the context provided by other histone variants or chromatin modifications, such as histone acetylation. The functional cooperation of SWR1-type remodelers with NuA4 histone acetyltransferase complexes, a recurring theme during evolution, is structurally implemented by species-specific strategies.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Cromatina , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Nucleossomos , Proteínas de Saccharomyces cerevisiae/genética
14.
Nucleic Acids Res ; 48(13): 7483-7501, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32510132

RESUMO

The MLE DExH helicase and the roX lncRNAs are essential components of the chromatin modifying Dosage Compensation Complex (DCC) in Drosophila. To explore the mechanism of ribonucleoprotein complex assembly, we developed vitRIP, an unbiased, transcriptome-wide in vitro assay that reveals RNA binding specificity. We found that MLE has intrinsic specificity for U-/A-rich sequences and tandem stem-loop structures and binds many RNAs beyond roX in vitro. The selectivity of the helicase for physiological substrates is further enhanced by the core DCC. Unwinding of roX2 by MLE induces a highly selective RNA binding surface in the unstructured C-terminus of the MSL2 subunit and triggers-specific association of MLE and roX2 with the core DCC. The exquisite selectivity of roX2 incorporation into the DCC thus originates from intimate cooperation between the helicase and the core DCC involving two distinct RNA selection principles and their mutual refinement.


Assuntos
Montagem e Desmontagem da Cromatina , RNA Longo não Codificante/metabolismo , Transcriptoma , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular/métodos , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ligação Proteica , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Elife ; 92020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432549

RESUMO

Histone acetylation and deposition of H2A.Z variant are integral aspects of active transcription. In Drosophila, the single DOMINO chromatin regulator complex is thought to combine both activities via an unknown mechanism. Here we show that alternative isoforms of the DOMINO nucleosome remodeling ATPase, DOM-A and DOM-B, directly specify two distinct multi-subunit complexes. Both complexes are necessary for transcriptional regulation but through different mechanisms. The DOM-B complex incorporates H2A.V (the fly ortholog of H2A.Z) genome-wide in an ATP-dependent manner, like the yeast SWR1 complex. The DOM-A complex, instead, functions as an ATP-independent histone acetyltransferase complex similar to the yeast NuA4, targeting lysine 12 of histone H4. Our work provides an instructive example of how different evolutionary strategies lead to similar functional separation. In yeast and humans, nucleosome remodeling and histone acetyltransferase complexes originate from gene duplication and paralog specification. Drosophila generates the same diversity by alternative splicing of a single gene.


Cells contain a large number of proteins that control the activity of genes in response to various signals and changes in their environment. Often these proteins work together in groups called complexes. In the fruit fly Drosophila melanogaster, one of these complexes is called DOMINO. The DOMINO complex alters gene activity by interacting with other proteins called histones which influence how the genes are packaged and accessed within the cell. DOMINO works in two separate ways. First, it can replace certain histones with other variants that regulate genes differently. Second, it can modify histones by adding a chemical marker to them, which alters how they interact with genes. It was not clear how DOMINO can do both of these things and how that is controlled; but it was known that cells can make two different forms of the central component of the complex, called DOM-A and DOM-B, which are both encoded by the same gene. Scacchetti et al. have now studied fruit flies to understand the activities of these forms. This revealed that they do have different roles and that gene activity in cells changes if either one is lost. The two forms operate as part complexes with different compositions and only DOM-A includes the TIP60 enzyme that is needed to modify histones. As such, it seems that DOM-B primarily replaces histones with variant forms, while DOM-A modifies existing histones. This means that each form has a unique role associated with each of the two known behaviors of this complex. The presence of two different DOMINO complexes is common to flies and, probably, other insects. Yet, in other living things, such as mammals and yeast, their two roles are carried out by protein complexes originating from two distinct genes. This illustrates a concept called convergent evolution, where different organisms find different solutions for the same problem. As such, these findings provide an insight into the challenges encountered through evolution and the diverse solutions that have developed. They will also help us to understand the ways in which protein activities can adapt to different needs over evolutionary time.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Drosophila/genética , Proteínas de Drosophila/genética , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Complexos Multiproteicos/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
16.
Nat Struct Mol Biol ; 27(2): 109-118, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042149

RESUMO

Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.


Assuntos
Cromatina/genética , DNA/genética , Nucleossomos/genética , Animais , Cromatina/metabolismo , DNA/metabolismo , Código das Histonas , Humanos , Nucleossomos/metabolismo , Regiões Promotoras Genéticas
17.
Nat Commun ; 10(1): 5343, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767855

RESUMO

In flies, the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, such as dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1's targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). JASPer-JIL-1 (JJ)-complex is the major form of kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, to modulate transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Interfase , Metilação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética
18.
EMBO Rep ; 20(8): e48138, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286660

RESUMO

In Drosophila melanogaster males, X-chromosome monosomy is compensated by chromosome-wide transcription activation. We found that complete dosage compensation during embryogenesis takes surprisingly long and is incomplete even after 10 h of development. Although the activating dosage compensation complex (DCC) associates with the X-chromosome and MOF acetylates histone H4 early, many genes are not compensated. Acetylation levels on gene bodies continue to increase for several hours after gastrulation in parallel with progressive compensation. Constitutive genes are compensated earlier than developmental genes. Remarkably, later compensation correlates with longer distances to DCC binding sites. This time-space relationship suggests that DCC action on target genes requires maturation of the active chromosome compartment.


Assuntos
Cromossomos de Insetos , Mecanismo Genético de Compensação de Dose , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Cromossomo X , Acetilação , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Feminino , Gastrulação/genética , Dosagem de Genes , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Monossomia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ativação Transcricional
19.
Nucleic Acids Res ; 47(14): 7444-7459, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31147711

RESUMO

Preblastoderm Drosophila embryo development is characterized by fast cycles of nuclear divisions. Extracts from these embryos can be used to reconstitute complex chromatin with high efficiency. We now discovered that this chromatin assembly system contains activities that recognize unprotected DNA ends and signal DNA damage through phosphorylation. DNA ends are initially bound by Ku and MRN complexes. Within minutes, the phosphorylation of H2A.V (homologous to γH2A.X) initiates from DNA breaks and spreads over tens of thousands DNA base pairs. The γH2A.V phosphorylation remains tightly associated with the damaged DNA and does not spread to undamaged DNA in the same reaction. This first observation of long-range γH2A.X spreading along damaged chromatin in an in vitro system provides a unique opportunity for mechanistic dissection. Upon further incubation, DNA ends are rendered single-stranded and bound by the RPA complex. Phosphoproteome analyses reveal damage-dependent phosphorylation of numerous DNA-end-associated proteins including Ku70, RPA2, CHRAC16, the exonuclease Rrp1 and the telomer capping complex. Phosphorylation of spindle assembly checkpoint components and of microtubule-associated proteins required for centrosome integrity suggests this cell-free system recapitulates processes involved in the regulated elimination of fatally damaged syncytial nuclei.


Assuntos
Sistema Livre de Células/metabolismo , Quebras de DNA , Drosophila/genética , Transdução de Sinais , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Drosophila/citologia , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Fosforilação , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
20.
Nucleic Acids Res ; 47(8): 4319-4333, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805612

RESUMO

Maleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR and SAXS data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAXK RNA binding motifs. NMR titrations combined with filter binding experiments and isothermal titration calorimetry (ITC) document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.


Assuntos
Proteínas Cromossômicas não Histona/química , DNA Helicases/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , RNA Longo não Codificante/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , DNA Helicases/genética , DNA Helicases/metabolismo , Mecanismo Genético de Compensação de Dose , Motivo de Ligação ao RNA de Cadeia Dupla , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Masculino , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA