Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 34(19): 3382-3384, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722807

RESUMO

Motivation: RNA interference, a highly conserved regulatory mechanism, is mediated via small RNAs (sRNA). Recent technical advances enabled the analysis of larger, complex datasets and the investigation of microRNAs and the less known small interfering RNAs. However, the size and intricacy of current data requires a comprehensive set of tools, able to discriminate the patterns from the low-level, noise-like, variation; numerous and varied suggestions from the community represent an invaluable source of ideas for future tools, the ability of the community to contribute to this software is essential. Results: We present a new version of the UEA sRNA Workbench, reconfigured to allow an easy insertion of new tools/workflows. In its released form, it comprises of a suite of tools in a user-friendly environment, with enhanced capabilities for a comprehensive processing of sRNA-seq data e.g. tools for an accurate prediction of sRNA loci (CoLIde) and miRNA loci (miRCat2), as well as workflows to guide the users through common steps such as quality checking of the input data, normalization of abundances or detection of differential expression represent the first step in sRNA-seq analyses. Availability and implementation: The UEA sRNA Workbench is available at: http://srna-workbench.cmp.uea.ac.uk. The source code is available at: https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs/genética , RNA Interferente Pequeno/genética , Análise de Sequência de RNA/métodos , Software , Interferência de RNA , Fluxo de Trabalho
2.
Sci Rep ; 7: 45674, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361900

RESUMO

In eusocial Hymenoptera (ants, bees and wasps), queen and worker adult castes typically arise via environmental influences. A fundamental challenge is to understand how a single genome can thereby produce alternative phenotypes. A powerful approach is to compare the molecular basis of caste determination and differentiation along the evolutionary trajectory between primitively and advanced eusocial species, which have, respectively, relatively undifferentiated and strongly differentiated adult castes. In the advanced eusocial honeybee, Apis mellifera, studies suggest that microRNAs (miRNAs) play an important role in the molecular basis of caste determination and differentiation. To investigate how miRNAs affect caste in eusocial evolution, we used deep sequencing and Northern blots to isolate caste-associated miRNAs in the primitively eusocial bumblebee Bombus terrestris. We found that the miRNAs Bte-miR-6001-5p and -3p are more highly expressed in queen- than in worker-destined late-instar larvae. These are the first caste-associated miRNAs from outside advanced eusocial Hymenoptera, so providing evidence for caste-associated miRNAs occurring relatively early in eusocial evolution. Moreover, we found little evidence that miRNAs previously shown to be associated with caste in A. mellifera were differentially expressed across caste pathways in B. terrestris, suggesting that, in eusocial evolution, the caste-associated role of individual miRNAs is not conserved.


Assuntos
Abelhas/genética , Hierarquia Social , MicroRNAs/genética , Predomínio Social , Animais , Evolução Biológica , Larva/genética , MicroRNAs/metabolismo
3.
RNA ; 23(6): 823-835, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28289155

RESUMO

Recently, high-throughput sequencing (HTS) has revealed compelling details about the small RNA (sRNA) population in eukaryotes. These 20 to 25 nt noncoding RNAs can influence gene expression by acting as guides for the sequence-specific regulatory mechanism known as RNA silencing. The increase in sequencing depth and number of samples per project enables a better understanding of the role sRNAs play by facilitating the study of expression patterns. However, the intricacy of the biological hypotheses coupled with a lack of appropriate tools often leads to inadequate mining of the available data and thus, an incomplete description of the biological mechanisms involved. To enable a comprehensive study of differential expression in sRNA data sets, we present a new interactive pipeline that guides researchers through the various stages of data preprocessing and analysis. This includes various tools, some of which we specifically developed for sRNA analysis, for quality checking and normalization of sRNA samples as well as tools for the detection of differentially expressed sRNAs and identification of the resulting expression patterns. The pipeline is available within the UEA sRNA Workbench, a user-friendly software package for the processing of sRNA data sets. We demonstrate the use of the pipeline on a H. sapiens data set; additional examples on a B. terrestris data set and on an A. thaliana data set are described in the Supplemental Information A comparison with existing approaches is also included, which exemplifies some of the issues that need to be addressed for sRNA analysis and how the new pipeline may be used to do this.


Assuntos
Biologia Computacional , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Pequeno RNA não Traduzido , Análise de Sequência de RNA , Software , Biologia Computacional/métodos , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Fluxo de Trabalho
4.
Genome Biol ; 16: 76, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908251

RESUMO

BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.


Assuntos
Abelhas/genética , Comportamento Animal , Genes de Insetos , Comportamento Social , Animais , Venenos de Abelha/genética , Abelhas/classificação , Abelhas/fisiologia , Células Quimiorreceptoras/metabolismo , Mapeamento Cromossômico , Bases de Dados Genéticas , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Rearranjo Gênico , Genômica , Sequências Repetitivas Dispersas , Masculino , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Selenoproteínas/genética , Selenoproteínas/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia
5.
BMC Genomics ; 15: 697, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25142467

RESUMO

BACKGROUND: Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. RESULTS: Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. CONCLUSIONS: This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and maybe used for acclimation to environmental conditions.


Assuntos
Diatomáceas/genética , Microalgas/genética , Pequeno RNA não Traduzido/genética , Diatomáceas/fisiologia , Sequências Repetitivas Dispersas , Microalgas/fisiologia , Estresse Oxidativo , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de RNA , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA