Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176009

RESUMO

The 5-hydroxytryptamine 3 (5-HT3) receptor belongs to the pentameric ligand-gated cation channel superfamily. Humans have five different 5-HT3 receptor subunits: A to E. The 5-HT3 receptors are located on the cell membrane, but a previous study suggested that mitochondria could also contain A subunits. In this article, we explored the distribution of 5-HT3 receptor subunits in intracellular and cell-free mitochondria. Organelle prediction software supported the localization of the A and E subunits on the inner membrane of the mitochondria. We transiently transfected HEK293T cells that do not natively express the 5-HT3 receptor with an epitope and fluorescent protein-tagged 5HT3A and 5HT3E subunits. Fluorescence microscopy and cell fractionation indicated that both subunits, A and E, localized to the mitochondria, while transmission electron microscopy revealed the location of the subunits on the mitochondrial inner membrane, where they could form heteromeric complexes. Cell-free mitochondria isolated from cell culture media colocalized with the fluorescent signal for A subunits. The presence of A and E subunits influenced changes in the membrane potential and mitochondrial oxygen consumption rates upon exposure to serotonin; this was inhibited by pre-treatment with ondansetron. Therefore, it is likely that the 5-HT3 receptors present on mitochondria directly impact mitochondrial function and that this may have therapeutic implications.


Assuntos
Receptores 5-HT3 de Serotonina , Serotonina , Humanos , Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Células HEK293 , Ondansetron/farmacologia , Mitocôndrias/metabolismo
2.
mBio ; 12(4): e0148021, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311571

RESUMO

Acinetobacter baumannii is a high-risk pathogen due to the rapid global spread of multidrug-resistant lineages. Its phylogenetic divergence from other ESKAPE pathogens means that determinants of its antimicrobial resistance can be difficult to extrapolate from other widely studied bacteria. A recent study showed that A. baumannii upregulates production of an outer membrane lipoprotein, which we designate BonA, in response to challenge with polymyxins. Here, we show that BonA has limited sequence similarity and distinct structural features compared to lipoproteins from other bacterial species. Analyses through X-ray crystallography, small-angle X-ray scattering, electron microscopy, and multiangle light scattering demonstrate that BonA has a dual BON (Bacterial OsmY and Nodulation) domain architecture and forms a decamer via an unusual oligomerization mechanism. This analysis also indicates this decamer is transient, suggesting dynamic oligomerization plays a role in BonA function. Antisera recognizing BonA shows it is an outer membrane protein localized to the divisome. Loss of BonA modulates the density of the outer membrane, consistent with a change in its structure or link to the peptidoglycan, and prevents motility in a clinical strain (ATCC 17978). Consistent with these findings, the dimensions of the BonA decamer are sufficient to permeate the peptidoglycan layer, with the potential to form a membrane-spanning complex during cell division. IMPORTANCE The pathogen Acinetobacter baumannii is considered an urgent threat to human health. A. baumannii is highly resistant to treatment with antibiotics, in part due to its protective cell envelope. This bacterium is only distantly related to other bacterial pathogens, so its cell envelope has distinct properties and contains components distinct from those of other bacteria that support its function. Here, we report the discovery of BonA, a protein that supports A. baumannii outer envelope function and is required for cell motility. We determine the atomic structure of BonA and show that it forms part of the cell division machinery and functions by forming a complex, features that mirror those of distantly related homologs from other bacteria. By improving our understanding of the A. baumannii cell envelope this work will assist in treating this pathogen.

3.
Nucleic Acids Res ; 48(14): 8006-8021, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32556302

RESUMO

The poliovirus type I IRES is able to recruit ribosomal machinery only in the presence of host factor PCBP2 that binds to stem-loop IV of the IRES. When PCBP2 is cleaved in its linker region by viral proteinase 3CD, translation initiation ceases allowing the next stage of replication to commence. Here, we investigate the interaction of PCBP2 with the apical region of stem-loop IV (SLIVm) of poliovirus RNA in its full-length and truncated form. CryoEM structure reconstruction of the full-length PCBP2 in complex with SLIVm solved to 6.1 Å resolution reveals a compact globular complex of PCBP2 interacting with the cruciform RNA via KH domains and featuring a prominent GNRA tetraloop. SEC-SAXS, SHAPE and hydroxyl-radical cleavage establish that PCBP2 stabilizes the SLIVm structure, but upon cleavage in the linker domain the complex becomes more flexible and base accessible. Limited proteolysis and REMSA demonstrate the accessibility of the linker region in the PCBP2/SLIVm complex and consequent loss of affinity of PCBP2 for the SLIVm upon cleavage. Together this study sheds light on the structural features of the PCBP2/SLIV complex vital for ribosomal docking, and the way in which this key functional interaction is regulated following translation of the poliovirus genome.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Poliovirus/genética , RNA Viral/química , Proteínas de Ligação a RNA/química , Microscopia Crioeletrônica , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
PLoS Genet ; 15(10): e1008435, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613892

RESUMO

Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins that transport ferredoxin into the bacterial cell and process it proteolytically. In this work we show that gene clusters related to the Fus are widespread in bacterial species. Through structural and biochemical characterisation of the distantly related Fus homologues YddB and PqqL from Escherichia coli, we show that these proteins are analogous to components of the Fus from Pectobacterium. The membrane protein YddB shares common structural features with the outer membrane ferredoxin transporter FusA, including a large extracellular substrate binding site. PqqL is an active protease with an analogous periplasmic localisation and iron-dependent expression to the ferredoxin processing protease FusC. Structural analysis demonstrates that PqqL and FusC share specific features that distinguish them from other members of the M16 protease family. Taken together, these data provide evidence that protease associated import systems analogous to the Fus are widespread in Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Pectobacterium/genética , Peptídeo Hidrolases/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Ferredoxinas/metabolismo , Genes Bacterianos/fisiologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica/fisiologia , Óperon/fisiologia , Pectobacterium/metabolismo , Peptídeo Hidrolases/metabolismo
5.
PLoS Biol ; 16(8): e2006026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071011

RESUMO

Iron is essential for life. Accessing iron from the environment can be a limiting factor that determines success in a given environmental niche. For bacteria, access of chelated iron from the environment is often mediated by TonB-dependent transporters (TBDTs), which are ß-barrel proteins that form sophisticated channels in the outer membrane. Reports of iron-bearing proteins being used as a source of iron indicate specific protein import reactions across the bacterial outer membrane. The molecular mechanism by which a folded protein can be imported in this way had remained mysterious, as did the evolutionary process that could lead to such a protein import pathway. How does the bacterium evolve the specificity factors that would be required to select and import a protein encoded on another organism's genome? We describe here a model whereby the plant iron-bearing protein ferredoxin can be imported across the outer membrane of the plant pathogen Pectobacterium by means of a Brownian ratchet mechanism, thereby liberating iron into the bacterium to enable its growth in plant tissues. This import pathway is facilitated by FusC, a member of the same protein family as the mitochondrial processing peptidase (MPP). The Brownian ratchet depends on binding sites discovered in crystal structures of FusC that engage a linear segment of the plant protein ferredoxin. Sequence relationships suggest that the bacterial gene encoding FusC has previously unappreciated homologues in plants and that the protein import mechanism employed by the bacterium is an evolutionary echo of the protein import pathway in plant mitochondria and plastids.


Assuntos
Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pectobacterium/metabolismo , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Metaloendopeptidases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transporte Proteico/fisiologia , Peptidase de Processamento Mitocondrial
6.
Nucleic Acids Res ; 46(6): 3169-3186, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29346611

RESUMO

RIG-I (retinoic acid inducible gene-I) is a cytosolic innate immune protein that senses viral dsRNA with a 5'-triphosphate overhang. Upon interaction with dsRNA a de-repression of the RIG-I CARD domains takes place that ultimately leads to the production of type I interferons and pro-inflammatory cytokines. Here we investigate the RIG-I conformational rearrangement upon interaction with an activating 5'-triphosphate-10-base pair dsRNA hairpin loop (10bp) compared with a less active 5'-triphosphate-8-base pair dsRNA hairpin loop (8bp). We use size-exclusion chromatography-coupled small-angle X-ray scattering (SAXS) and limited tryptic digest experiments to show that that upon binding to 10 bp, but not 8 bp, RIG-I becomes extended and shows greater flexibility, reflecting the release of its CARDs. We also examined the effect of different ATP analogues on the conformational changes of RIG-I/dsRNA complexes. Of the analogues tested, the addition of ATP transition state analogue ADP-AlFx further assisted in the complete activation of RIG-I in complex with 10bp and also to some extent RIG-I bound to 8bp. Together these data provide solution-based evidence for the molecular mechanism of innate immune signaling by RIG-I as stimulated by short hairpin RNA and ATP.


Assuntos
Trifosfato de Adenosina/química , Proteína DEAD-box 58/química , Domínios Proteicos , RNA de Cadeia Dupla/química , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Cromatografia em Gel , Proteína DEAD-box 58/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos , Espalhamento a Baixo Ângulo , Transdução de Sinais , Soluções/química , Difração de Raios X
7.
Nucleic Acids Res ; 45(8): 4944-4957, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28184449

RESUMO

TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Šresolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Ligação a Poli(A)/química , Ribonucleosídeo Difosfato Redutase/química , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Oligonucleotídeos/química , Proteínas de Ligação a Poli(A)/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Motivo de Reconhecimento de RNA/genética , Ribonucleosídeo Difosfato Redutase/genética , Antígeno-1 Intracelular de Células T
8.
Biochem J ; 473(18): 2763-82, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27364155

RESUMO

Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.


Assuntos
Proteínas do Citoesqueleto/química , Dicroísmo Circular , Cristalografia por Raios X , Dimerização , Conformação Proteica
9.
J Struct Biol ; 194(2): 205-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923153

RESUMO

Chemotaxis and motility play an important role in the colonisation of avian and human hosts by Campylobacter jejuni. Chemotactic recognition of extracellular signals is mediated by the periplasmic sensing domain of methyl-accepting chemotactic proteins (membrane-embedded receptors). In this work, we report a high-resolution structure of the periplasmic sensing domain of transducer-like protein 1 (Tlp1), an aspartate receptor of C. jejuni. Crystallographic analysis revealed that it contains two Per-Arnt-Sim (PAS) subdomains. An acetate and chloride ions (both from the crystallisation buffer) were observed bound to the membrane-proximal and membrane-distal PAS subdomains, respectively. Surprisingly, despite being crystallised in the presence of aspartate, the structure did not show any electron density corresponding to this amino acid. Furthermore, no binding between the sensing domain of Tlp1 and aspartate was detected by microcalorimetric experiments. These structural and biophysical data suggest that Tlp1 does not sense aspartate directly; instead, ligand recognition is likely to occur indirectly via an as yet unidentified periplasmic binding protein.


Assuntos
Ácido Aspártico/química , Proteínas de Bactérias/química , Campylobacter jejuni/química , Receptores de Aminoácido/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Quimiotaxia/fisiologia , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de Aminoácido/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2127-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457436

RESUMO

Chemotaxis, mediated by methyl-accepting chemotaxis protein (MCP) receptors, plays an important role in the ecology of bacterial populations. This paper presents the first crystallographic analysis of the structure and ligand-induced conformational changes of the periplasmic tandem Per-Arnt-Sim (PAS) sensing domain (PTPSD) of a characterized MCP chemoreceptor. Analysis of the complex of the Campylobacter jejuni Tlp3 PTPSD with isoleucine (a chemoattractant) revealed that the PTPSD is a dimer in the crystal. The two ligand-binding sites are located in the membrane-distal PAS domains on the faces opposite to the dimer interface. Mutagenesis experiments show that the five strongly conserved residues that stabilize the main-chain moiety of isoleucine are essential for binding, suggesting that the mechanism by which this family of chemoreceptors recognizes amino acids is highly conserved. Although the fold and mode of ligand binding of the PTPSD are different from the aspartic acid receptor Tar, the structural analysis suggests that the PTPSDs of amino-acid chemoreceptors are also likely to signal by a piston displacement mechanism. The PTPSD fluctuates between piston (C-terminal helix) `up' and piston `down' states. Binding of an attractant to the distal PAS domain locks it in the closed form, weakening its association with the proximal domain and resulting in the transition of the latter into an open form, concomitant with a downward (towards the membrane) 4 Špiston displacement of the C-terminal helix. In vivo, this movement would generate a transmembrane signal by driving a downward displacement of the transmembrane helix 2 towards the cytoplasm.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Isoleucina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/química , Campylobacter jejuni/citologia , Quimiotaxia , Cristalografia por Raios X , Isoleucina/química , Proteínas de Membrana/química , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais
11.
Sci Rep ; 5: 12905, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243377

RESUMO

The biogenesis of membranes from constituent proteins and lipids is a fundamental aspect of cell biology. In the case of proteins assembled into bacterial outer membranes, an overarching question concerns how the energy required for protein insertion and folding is accessed at this remote location of the cell. The translocation and assembly module (TAM) is a nanomachine that functions in outer membrane biogenesis and virulence in diverse bacterial pathogens. Here we demonstrate the interactions through which TamA and TamB subunits dock to bridge the periplasm, and unite the outer membrane aspects to the inner membrane of the bacterial cell. We show that specific functional features in TamA have been conserved through evolution, including residues surrounding the lateral gate and an extensive surface of the POTRA domains. Analysis by nuclear magnetic resonance spectroscopy and small angle X-ray scattering document the characteristic structural features of these POTRA domains and demonstrate rigidity in solution. Quartz crystal microbalance measurements pinpoint which POTRA domain specifically docks the TamB subunit of the nanomachine. We speculate that the POTRA domain of TamA functions as a lever arm in order to drive the activity of the TAM, assembling proteins into bacterial outer membranes.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/fisiologia , Sequência Conservada , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
12.
J Biol Chem ; 290(16): 10460-71, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25759384

RESUMO

The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.


Assuntos
Antígenos HLA-B/química , Antígenos HLA-G/química , Receptores KIR2DL4/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mariposas/citologia , Mariposas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores KIR2DL4/genética , Receptores KIR2DL4/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
13.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 2): 211-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664798

RESUMO

A periplasmic sensory domain of the Campylobacter jejuni chemoreceptor for multiple ligands (CcmL) has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 as a precipitating agent. A complete data set was collected to 1.3 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belonged to space group P21, with unit-cell parameters a = 42.6, b = 138.0, c = 49.0 Å, ß = 94.3°.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Campylobacter/química , Redobramento de Proteína , Sequência de Aminoácidos , Cromatografia em Gel , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Ligantes , Luz , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Espalhamento de Radiação
14.
Mol Biol Rep ; 41(12): 7945-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156536

RESUMO

DnaK plays a central role in stress response in the important human pathogen Neisseria gonorrhoeae. The genes encoding the DnaK chaperone machine (DnaK/DnaJ/GrpE) in N. gonorrhoeae are transcribed from RpoH (σ(32))-dependent promoters. In this study, we cloned, purified and biochemically characterised N. gonorrhoeae DnaK (NgDnaK) and RpoH. The NgDnaK and RpoH sequences are 73 and 50 % identical to the sequences of their respective E. coli counterparts. Similar to EcDnaK, nucleotide-free NgDnaK exists as a mix of monomers, dimers and higher oligomeric species in solution, and dissociates into monomers on addition of ATP. Like E. coli σ(32), RpoH of N. gonorrhoeae is monomeric in solution. Kinetic analysis of the basal ATPase activity of purified NgDnaK revealed a V max of 193 pmol phosphate released per minute per microgram DnaK (which is significantly higher than reported basal ATPase activity of EcDnaK), and the turnover number against ATP was 0.4 min(-1) under our assay conditions. Nucleotide-free NgDnaK bound a short model substrate, NR-peptide, with micromolar affinity close to that reported for EcDnaK. Our analysis showed that interaction between N. gonorrhoeae RpoH and DnaK appears to be ATP-dependent and non-specific, in stark contrast to the E. coli DnaK system where σ(32) and DnaK interact as monomers even in the absence of ATP. Sequence comparison showed that the DnaK-binding site of σ(32) is not conserved in RpoH. Our findings suggest that the mechanism of DnaK/RpoH recognition in N. gonorrhoeae is different from that in E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Neisseria gonorrhoeae/metabolismo , Fator sigma/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/isolamento & purificação , Proteínas de Choque Térmico/isolamento & purificação , Cinética , Dados de Sequência Molecular , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Regiões Promotoras Genéticas , Fator sigma/isolamento & purificação
15.
J Virol ; 88(2): 799-810, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227841

RESUMO

RNA-specific adenosine deaminase (ADAR)-mediated adenosine-to-inosine (A-to-I) editing is a critical arm of the antiviral response. However, mechanistic insights into how A-to-I RNA editing affects viral infection are lacking. We posited that inosine incorporation into RNA facilitates sensing of nonself RNA by innate immune sensors and accordingly investigated the impact of inosine-modified RNA on Toll-like receptor 7 and 8 (TLR7/8) sensing. Inosine incorporation into synthetic single-stranded RNA (ssRNA) potentiated tumor necrosis factor alpha (TNF-α) or alpha interferon (IFN-α) production in human peripheral blood mononuclear cells (PBMCs) in a sequence-dependent manner, indicative of TLR7/8 recruitment. The effect of inosine incorporation on TLR7/8 sensing was restricted to immunostimulatory ssRNAs and was not seen with inosine-containing short double-stranded RNAs or with a deoxy-inosine-modified ssRNA. Inosine-mediated increase of self-secondary structure of an ssRNA resulted in potentiated IFN-α production in human PBMCs through TLR7 recruitment, as established through the use of a TLR7 antagonist and Tlr7-deficient cells. There was a correlation between hyperediting of influenza A viral ssRNA and its ability to stimulate TNF-α, independent of 5'-triphosphate residues, and involving Adar-1. Furthermore, A-to-I editing of viral ssRNA directly enhanced mouse Tlr7 sensing, when present in proportions reproducing biologically relevant levels of RNA editing. Thus, we demonstrate for the first time that inosine incorporation into immunostimulatory ssRNA can potentiate TLR7/8 activation. Our results suggest a novel function of A-to-I RNA editing, which is to facilitate TLR7/8 sensing of phagocytosed viral RNA.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Inosina/genética , Edição de RNA , RNA Viral/genética , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Adenosina/genética , Adenosina/imunologia , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Animais , Sequência de Bases , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/genética , Inosina/imunologia , Interferon-alfa/genética , Interferon-alfa/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/imunologia , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
16.
Biochemistry ; 52(48): 8652-62, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24175947

RESUMO

The cocaine-binding aptamer is unusual in that it tightly binds molecules other than the ligand it was selected for. Here, we study the interaction of the cocaine-binding aptamer with one of these off-target ligands, quinine. Isothermal titration calorimetry was used to quantify the quinine-binding affinity and thermodynamics of a set of sequence variants of the cocaine-binding aptamer. We find that the affinity of the cocaine-binding aptamer for quinine is 30-40 times stronger than it is for cocaine. Competitive-binding studies demonstrate that both quinine and cocaine bind at the same site on the aptamer. The ligand-induced structural-switching binding mechanism of an aptamer variant that contains three base pairs in stem 1 is retained with quinine as a ligand. The short stem 1 aptamer is unfolded or loosely folded in the free form and becomes folded when bound to quinine. This folding is confirmed by NMR spectroscopy and by the short stem 1 construct having a more negative change in heat capacity of quinine binding than is seen when stem 1 has six base pairs. Small-angle X-ray scattering (SAXS) studies of the free aptamer and both the quinine- and the cocaine-bound forms show that, for the long stem 1 aptamers, the three forms display similar hydrodynamic properties, and the ab initio shape reconstruction structures are very similar. For the short stem 1 aptamer there is a greater variation among the SAXS-derived ab initio shape reconstruction structures, consistent with the changes expected with its structural-switching binding mechanism.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Cocaína/metabolismo , Quinina/metabolismo , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Cocaína/química , Hidrodinâmica , Ligantes , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Concentração Osmolar , Quinina/química , Especificidade por Substrato , Termodinâmica
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 333-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23519408

RESUMO

Thioredoxin-interacting protein (TXNIP) is one of the six known α-arrestins and has recently received considerable attention owing to its involvement in redox signalling and metabolism. Various stress stimuli such as high glucose, heat shock, UV, H2O2 and mechanical stress among others robustly induce the expression of TXNIP, resulting in the sequestration and inactivation of thioredoxin, which in turn leads to cellular oxidative stress. While TXNIP is the only α-arrestin known to bind thioredoxin, TXNIP and two other α-arrestins, Arrdc4 and Arrdc3, have been implicated in metabolism. Furthermore, owing to its roles in the pathologies of diabetes and cardiovascular disease, TXNIP is considered to be a promising drug target. Based on their amino-acid sequences, TXNIP and the other α-arrestins are remotely related to ß-arrestins. Here, the crystal structure of the N-terminal domain of TXNIP is reported. It provides the first structural information on any of the α-arrestins and reveals that although TXNIP adopts a ß-arrestin fold as predicted, it is structurally more similar to Vps26 proteins than to ß-arrestins, while sharing below 15% pairwise sequence identity with either.


Assuntos
Proteínas de Transporte/química , Fragmentos de Peptídeos/química , Tiorredoxinas/química , Arrestinas/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Previsões , Humanos , Dobramento de Proteína , Estrutura Terciária de Proteína , Tiorredoxinas/metabolismo , Proteínas de Transporte Vesicular/química
18.
Nucleic Acids Res ; 41(5): 3436-45, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23325848

RESUMO

The retinoic acid inducible gene-I (RIG-I)-like family of receptors is positioned at the front line of our innate cellular defence system. RIG-I detects and binds to foreign duplex RNA in the cytoplasm of both immune and non-immune cells, and initiates the induction of type I interferons and pro-inflammatory cytokines. The mechanism of RIG-I activation by double-stranded RNA (dsRNA) involves a molecular rearrangement proposed to expose the N-terminal pair of caspase activation recruitment domains, enabling an interaction with interferon-beta promoter stimulator 1 (IPS-1) and thereby initiating downstream signalling. dsRNA is particularly stimulatory when longer than 20 bp, potentially through allowing binding of more than one RIG-I molecule. Here, we characterize full-length RIG-I and RIG-I subdomains combined with a stimulatory 29mer dsRNA using multi-angle light scattering and size-exclusion chromatography-coupled small-angle X-ray scattering, to build up a molecular model of RIG-I before and after the formation of a 2:1 protein:dsRNA assembly. We report the small-angle X-ray scattering-derived solution structure of the human apo-RIG-I and observe that on binding of RIG-I to dsRNA in a 2:1 ratio, the complex becomes highly extended and flexible. Hence, here we present the first model of the fully activated oligomeric RIG-I.


Assuntos
Apoproteínas/química , RNA Helicases DEAD-box/química , RNA de Cadeia Dupla/química , Cromatografia em Gel , Proteína DEAD-box 58 , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Receptores Imunológicos , Espalhamento a Baixo Ângulo , Tripsina/química , Difração de Raios X
19.
Brain ; 135(Pt 11): 3251-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22822039

RESUMO

The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator-matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or downstream matrix metalloproteinase-3 induction may provide viable therapeutic strategies to reduce cerebrovascular permeability after neurotrauma.


Assuntos
Lesões Encefálicas/fisiopatologia , Permeabilidade Capilar/fisiologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Ativador de Plasminogênio Tecidual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminas/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Lesões Encefálicas/líquido cefalorraquidiano , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Injeções Intraventriculares , Masculino , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/administração & dosagem , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Recuperação de Função Fisiológica/fisiologia , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tecidual/metabolismo
20.
Biochimie ; 94(5): 1119-27, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22285967

RESUMO

Fasciola parasites (liver flukes) express numerous cathepsin L proteases that are believed to be involved in important functions related to host invasion and parasite survival. These proteases are evolutionarily divided into clades that are proposed to reflect their substrate specificity, most noticeably through the S(2) subsite. Single amino acid substitutions to residues lining this site, including amino acid residue 69 (aa69; mature cathepsin L5 numbering) can have profound influences on subsite architecture and influence enzyme specificity. Variations at aa69 among known Fasciola cathepsin L proteases include leucine, tyrosine, tryptophan, phenylalanine and glycine. Other amino acids (cysteine, serine) might have been expected at this site due to codon usage as cathepsin L isoenzymes evolved, but C69 and S69 have not been observed. The introduction of L69C and L69S substitutions into FhCatL5 resulted in low overall activity indicating their expression provides no functional advantage, thus explaining the absence of such variants in Fasciola. An FhCatL5 L69F variant showed an increase in the ability to cleave substrates with P(2) proline, indicating F69 variants expressed by the fluke would likely have this ability. An FhCatL2 Y69L variant showed a decreased acceptance of P(2) proline, further highlighting the importance of Y69 for FhCatL2 P(2) proline acceptance. Finally, the P(1)-P(4) specificity of Fasciola cathepsin L5 was determined and, unexpectedly, aspartic acid was shown to be well accepted at P(2,) which is unique amongst Fasciola cathepsins examined to date.


Assuntos
Catepsinas/química , Catepsinas/metabolismo , Fasciola hepatica/metabolismo , Animais , Catepsinas/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA