RESUMO
The suckerin family of proteins, identified from the squid sucker ring teeth assembly, offers unique mechanical properties and potential advantages over other natural biomaterials. In this study, a small suckerin isoform, suckerin-12, is used to create enzymatically crosslinked, macro-scale hydrogels. Upon exposure to specific salt conditions, suckerin-12 hydrogels contracted into a condensed state where mechanical properties are found to be modulated by the salt anion present. The rate of contraction is found to correlate well with the kosmotropic arm of the Hofmeister anion series. However, the observed changes in hydrogel mechanical properties are better explained by the ability of the salt to neutralize charges in suckerin-12 by deprotonization or charge screening. Thus, by altering the anions in the condensing salt solution, it is possible to tune the mechanical properties of suckerin-12 hydrogels. The potential for suckerins to add new properties to materials based on naturally-derived proteins is highlighted.
Assuntos
Decapodiformes/química , Fibroínas/química , Hidrogéis/química , Estresse Mecânico , Animais , Isoformas de Proteínas/químicaRESUMO
Mechanisms of biomaterial sclerotization in natural systems promise new insights into how the mechanical properties of engineered materials may be dynamically modulated. One such example involves the proteinaceous jaw of the marine sandworm, Nereis virens. Previously, the mechanical properties of the N. virens jaw were shown to be modulated by Zn binding, a property that was proposed to be enabled by the presence of the histidine-rich jaw protein, Nvjp-1. Here we demonstrate the creation of Nvjp-1-based hydrogels and show that progressive sclerotization of these hydrogels can be accomplished with hierarchical exposure to metal cations and anions. Divalent Zn cations are capable of reversibly sclerotizing the hydrogels through the formation of coordinate cross-links, an effect that is shown to be remarkably specific for Zn. Additionally, the degree of Zn-induced sclerotization is strongly influenced by the identity of the anion present in the hydrogel. Thus, the viscoelastic properties of Nvjp-1 hydrogels can be modulated through programmed, hierarchical exposure to specific cations and anions present in the sclerotizing salts. These observations have resulted in new hydrogel capabilities, such as the creation of anion-controlled shape-memory polymers, and will add to the number of control parameters that can be used to tune the properties of functional hydrogels in a dynamic manner.