Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 109(1): 23-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531827

RESUMO

Mycobacterium avium (Mav) causes chronic infections in immunocompromised patients that require long-term antibiotic treatment. We have previously shown that Mav takes residence in host Mϕs and establishes a compartment (MavC) in which it is hidden from host defenses. Failure to establish the MavC traps Mav in Lamp1+ phagolysosomes where growth is prevented, and inflammatory signaling activated through TLRs 7/8. To elucidate how antibiotic treatment affects mycobacterial trafficking and host defenses, we infected human primary Mϕs with Mav for 4 days prior to treatment with a macrolide, aminoglycoside, and ethambutol. We show that Mav is killed and the MavC fuses with Lamp1+ lysosomes following antibiotic treatment. However, this does not result in nuclear translocation of NF-κB or production of inflammatory cytokines, suggesting different Lamp1+ lysosomal compartments can form that differ in their innate signaling capabilities. Thus, we show that upon antibiotic treatment of a chronic infection, Mav is quietly disposed of by Mϕs.


Assuntos
Antibióticos Antituberculose/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Infecção por Mycobacterium avium-intracellulare , Citocinas/biossíntese , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Complexo Mycobacterium avium/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/microbiologia
2.
Angew Chem Int Ed Engl ; 60(2): 716-720, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32936507

RESUMO

Visualizing the functional interactions of biomolecules such as proteins and nucleic acids is key to understanding cellular life on the molecular scale. Spatial proximity is often used as a proxy for the direct interaction of biomolecules. However, current techniques to visualize spatial proximity are either limited by spatial resolution, dynamic range, or lack of single-molecule sensitivity. Here, we introduce Proximity-PAINT (pPAINT), a variation of the super-resolution microscopy technique DNA-PAINT. pPAINT uses a split-docking-site configuration to detect spatial proximity with high sensitivity, low false-positive rates, and tunable detection distances. We benchmark and optimize pPAINT using designer DNA nanostructures and demonstrate its cellular applicability by visualizing the spatial proximity of alpha- and beta-tubulin in microtubules using super-resolution detection.


Assuntos
Microscopia de Fluorescência/métodos , Tubulina (Proteína)/análise , Anticorpos/imunologia , DNA/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microtúbulos/química , Nanoestruturas/química , Hibridização de Ácido Nucleico , Tubulina (Proteína)/imunologia
3.
Front Immunol ; 8: 1243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29042860

RESUMO

TLR8 is the major endosomal sensor of degraded RNA in human monocytes and macrophages. It has been implicated in the sensing of viruses and more recently also bacteria. We previously identified a TLR8-IFN regulatory factor 5 (IRF5) signaling pathway that mediates IFNß and interleukin-12 (IL-12) induction by Staphylococcus aureus and is antagonized by TLR2. The relative importance of TLR8 for the sensing of various bacterial species is however still unclear. We here compared the role of TLR8 and IRF5 for the sensing of Group B Streptococcus (GBS), S. aureus, and Escherichia coli in human primary monocytes and monocyte-derived macrophages (MDM). GBS induced stronger IFNß and TNF production as well as IRF5 nuclear translocation compared to S. aureus grown to the stationary phase, while S. aureus in exponential growth appeared similarly potent to GBS. Cytokine induction in primary human monocytes by GBS was not dependent on hemolysins, and induction of IFNß and IL-12 as well as IRF5 activation were reduced with TLR2 ligand costimulation. Heat inactivation of GBS reduced IRF5 and NF-kB translocation, while only the viable E. coli activated IRF5. The attenuated stimulation correlated with loss of bacterial RNA integrity. The E. coli-induced IRF5 translocation was not inhibited by TLR2 costimulation, suggesting that IRF5 was activated via a TLR8-independent mechanism. Gene silencing of MDM using siRNA revealed that GBS-induced IFNß, IL-12-p35, and TNF production was dependent on TLR8 and IRF5. In contrast, cytokine induction by E. coli was TLR8 independent but still partly dependent on IRF5. We conclude that TLR8-IRF5 signaling is more important for the sensing of GBS than for stationary grown S. aureus in human primary monocytes and MDM, likely due to reduced resistance of GBS to phagosomal degradation and to a lower production of TLR2 activating lipoproteins. TLR8 does not sense viable E. coli, while IRF5 still contributes to E. coli-induced cytokine production, possibly via a cytosolic nucleic acid sensing mechanism.

4.
PLoS One ; 10(9): e0134644, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406896

RESUMO

Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D.


Assuntos
Imageamento Tridimensional , Leucócitos Mononucleares/microbiologia , Leucócitos Mononucleares/patologia , Mycobacterium , Tomografia com Microscopia Eletrônica , Humanos , Processamento de Imagem Assistida por Computador , Leucócitos Mononucleares/ultraestrutura , Macrófagos/microbiologia , Macrófagos/patologia , Macrófagos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura , Mycobacterium/fisiologia
5.
Nanoscale ; 7(18): 8438-50, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25891641

RESUMO

Nanoscale topographies and chemical patterns can be used as synthetic cell interfaces with a range of applications including the study and control of cellular processes. Herein, we describe the fabrication of high aspect ratio nanostructures using electron beam lithography in the epoxy-based polymer SU-8. We show how nanostructure geometry, position and fluorescence properties can be tuned, allowing flexible device design. Further, thiol-epoxide reactions were developed to give effective and specific modification of SU-8 surface chemistry. SU-8 nanostructures were made directly on glass cover slips, enabling the use of high resolution optical techniques such as live-cell confocal, total internal reflection and 3D structured illumination microscopy to investigate cell interactions with the nanostructures. Details of cell adherence and spreading, plasma membrane conformation and actin organization in response to high aspect ratio nanopillars and nanolines were investigated. The versatile structural and chemical properties combined with the high resolution cell imaging capabilities of this system are an important step towards the better understanding and control of cell interactions with nanomaterials.


Assuntos
Materiais Biocompatíveis/síntese química , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Compostos de Epóxi/química , Fluidez de Membrana/fisiologia , Nanopartículas/química , Polímeros/química , Actinas/metabolismo , Cristalização/métodos , Células HeLa , Humanos , Teste de Materiais , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA