Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 237(6): 669-682, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37139865

RESUMO

The high prevalence of cardiac diseases around the world has created a need for quick, easy and cost effective approaches to diagnose heart disease. The auscultation and interpretation of heart sounds using the stethoscope is relatively inexpensive, requires minimal to advanced training, and is widely available and easily carried by healthcare providers working in urban environments or medically underserved rural areas. Since René-Théophile-Hyacinthe Laennec's simple, monoaural design, the capabilities of modern-day, commercially available stethoscopes and stethoscope systems have radically advanced with the integration of electronic hardware and software tools, however these systems are largely confined to the metropolitan medical centers. The purpose of this paper is to review the history of stethoscopes, compare commercially available stethoscope products and analytical software, and discuss future directions. Our review includes a description of heart sounds and how modern software enables the measurement and analysis of time intervals, teaching auscultation, remote cardiac examination (telemedicine) and, more recently, spectrographic evaluation and electronic storage. The basic methodologies behind modern software algorithms and techniques for heart sound preprocessing, segmentation and classification are described to provide awareness.


Assuntos
Ruídos Cardíacos , Estetoscópios , Auscultação/métodos , Software , Algoritmos , Auscultação Cardíaca
2.
Environ Monit Assess ; 192(12): 776, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33219864

RESUMO

Contamination from pesticides and nitrate in groundwater is a significant threat to water quality in general and agriculturally intensive regions in particular. Three widely used machine learning models, namely, artificial neural networks (ANN), support vector machines (SVM), and extreme gradient boosting (XGB), were evaluated for their efficacy in predicting contamination levels using sparse data with non-linear relationships. The predictive ability of the models was assessed using a dataset consisting of 303 wells across 12 Midwestern states in the USA. Multiple hydrogeologic, water quality, and land use features were chosen as the independent variables, and classes were based on measured concentration ranges of nitrate and pesticide. This study evaluates the classification performance of the models for two, three, and four class scenarios and compares them with the corresponding regression models. The study also examines the issue of class imbalance and tests the efficacy of three class imbalance mitigation techniques: oversampling, weighting, and oversampling and weighting, for all the scenarios. The models' performance is reported using multiple metrics, both insensitive to class imbalance (accuracy) and sensitive to class imbalance (F1 score and MCC). Finally, the study assesses the importance of features using game-theoretic Shapley values to rank features consistently and offer model interpretability.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Aprendizado de Máquina , Redes Neurais de Computação , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA