Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746185

RESUMO

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

2.
mBio ; 15(4): e0222223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411080

RESUMO

During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE: HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Infecções por HIV , HIV , Fator 2 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Latência Viral , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linfócitos T CD4-Positivos , Sistemas CRISPR-Cas , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Replicação Viral , HIV/fisiologia
3.
Cancer Rep (Hoboken) ; 7(2): e1988, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38351553

RESUMO

BACKGROUND: Breast cancer (BC) metastases to the abdomen and pelvis affect the liver, mesentery, retroperitoneum, peritoneum, bladder, kidney, ovary, and uterus. The study documented the radiological pattern and features of the chest, bone, abdominal and pelvic (AP) metastases among advanced BC patients. AIM: The aim is to document the radiological pattern and features of breast cancer metastasis in the chest, abdomen, pelvis and bones. MATERIALS AND RESULTS: Chest, abdominal, and pelvic computed tomography scan images of 36 patients with advanced BC were collated from Cape Coast Teaching Hospital and RAAJ Diagnostics. The images were prospectively assessed for metastasis to the organs of the chest, AP soft tissues, and bones. Radiologic features of metastasis of the lungs, liver, lymph nodes (LNs), and bones were documented. Patients' demographics, clinical data, and histopathology reports were also collected. The data were captured using UVOSYO and exported to Microsoft Excel templates. The data obtained were descriptively analyzed. Only 2.8% of BCs exhibited metaplastic BC, whereas 97.2% had invasive ductal BC. Triple-negative cases were 55.6%. Of 36 patients, 31 (86.1%), 21 (58.3%), and 14(38.8%) were diagnosed of chest, AP, and bone tissues metastasis, respectively. LN involvement was reported in 26 (72.2%) patients. Majority, 21 (58.3%) were diagnosed of multiple sites metastasis with 15 (41.7%) showing single site. Lungs (77.4%, 24/31) and liver (47.6%, 10/21) were the most affected distant organs. Most bone metastases were lytic lesions (92.9%, 13/14) with the vertebrae (85.7%, 12/14) been the most affected. CONCLUSION: According to the study, advanced BC patients have a higher-than-average radiologic incidence of lung, liver, bone, and LN metastases.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Linfonodos/patologia
4.
Mol Diagn Ther ; 27(5): 583-592, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462793

RESUMO

INTRODUCTION: The true nature of the population spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations is often not fully known as most cases, particularly in Africa, are asymptomatic. Finding the true magnitude of SARS-CoV-2 spread is crucial to provide actionable data about the epidemiological progress of the disease for researchers and policymakers. This study developed and optimized an antibody enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid antigen expressed in-house using a simple bacterial expression system. METHODS: Nucleocapsid protein from SARS-CoV-2 was expressed and purified from Escherichia coli. Plasma samples used for the assay development were obtained from Ghanaian SARS-CoV-2 seropositive individuals during the pandemic, while seronegative controls were plasma samples collected from blood donors before the coronavirus disease 2019 (COVID-19) pandemic. Another set of seronegative controls was collected during the COVID-19 pandemic. Antibody detection and levels within the samples were validated using commercial kits and Luminex. Analyses were performed using GraphPad Prism, and the sensitivity, specificity and background cut-off were calculated. RESULTS AND DISCUSSION: This low-cost ELISA (£0.96/test) assay has a high prediction of 98.9%, and sensitivity and specificity of 97% and 99%, respectively. The assay was subsequently used to screen plasma from SARS-CoV-2 RT-PCR-positive Ghanaians. The assay showed no significant difference in nucleocapsid antibody levels between symptomatic and asymptomatic, with an increase of the levels over time. This is in line with our previous publication. CONCLUSION: This study developed a low-cost and transferable assay that enables highly sensitive and specific detection of human anti-SARS-CoV-2 IgG antibodies. This assay can be modified to include additional antigens and used for continuous monitoring of sero-exposure to SARS-CoV-2 in West Africa.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Gana/epidemiologia , Pandemias , Nucleocapsídeo , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade
5.
Mol Omics ; 19(7): 538-551, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37204043

RESUMO

Women coinfected with human immunodeficiency virus type 1 (HIV-1) and human papillomavirus (HPV) are six times as likely to develop invasive cervical carcinoma compared to those without HIV. Unlike other HIV-associated cancers, the risk of cervical cancer development does not change when HPV/HIV coinfected women begin antiretroviral therapy, suggesting HIV-associated immune suppression is not a key driver of cervical cancer development in coinfected women. Here, we investigated whether the persistent secretion of inflammatory factors in HIV-positive patients on antiretroviral therapy could enhance cancer signaling in HPV-infected cervical cells via endocrine mechanisms. We integrated previously reported HIV-induced secreted inflammatory factors (Hi-SIFs), HIV and HPV virus-human protein interactions, and cervical cancer patient genomic data using network propagation to understand the pathways underlying disease development in HPV/HIV coinfection. Our results pinpointed the PI3K-AKT signaling pathway to be enriched at the interface between Hi-SIFs and HPV-host molecular networks, in alignment with PI3K pathway mutations being prominent drivers of HPV-associated, but HIV independent, cervical cancer development. Furthermore, we experimentally stimulated cervical cells with 14 Hi-SIFs to assess their ability to activate PI3K-AKT signaling. Strikingly, we found 8 factors (CD14, CXCL11, CXCL9, CXCL13, CXCL17, AHSG, CCL18, and MMP-1) to significantly upregulate AKT phosphorylation (pAKT-S473) relative to a phosphate buffered saline control. Our findings suggest that Hi-SIFs cooperate with HPV infection in cervical cells to over-activate PI3K-AKT signaling, effectively phenocopying PI3K-AKT pathway mutations, resulting in enhanced cervical cancer development in coinfected women. Our insights could support the design of therapeutic interventions targeting the PI3K-AKT pathway or neutralizing Hi-SIFs in HPV/HIV coinfected cervical cancer patients.


Assuntos
Infecções por HIV , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Papillomavirus Humano , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por HIV/complicações , Infecções por HIV/genética , Mutação
6.
BMC Med ; 20(1): 370, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184636

RESUMO

BACKGROUND: West Africa has recorded a relatively higher proportion of asymptomatic coronavirus disease 2019 (COVID-19) cases than the rest of the world, and West Africa-specific host factors could play a role in this discrepancy. Here, we assessed the association between COVID-19 severity among Ghanaians with their immune profiles and ABO blood groups. METHODS: Plasma samples were obtained from Ghanaians PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive individuals. The participants were categorized into symptomatic and asymptomatic cases. Cytokine profiling and antibody quantification were performed using Luminex™ multiplex assay whereas antigen-driven agglutination assay was used to assess the ABO blood groups. Immune profile levels between symptomatic and asymptomatic groups were compared using the two-tailed Mann-Whitney U test. Multiple comparisons of cytokine levels among and between days were tested using Kruskal-Wallis with Dunn's post hoc test. Correlations within ABO blood grouping (O's and non-O's) and between cytokines were determined using Spearman correlations. Logistic regression analysis was performed to assess the association of various cytokines with asymptomatic phenotype. RESULTS: There was a trend linking blood group O to reduced disease severity, but this association was not statistically significant. Generally, symptomatic patients displayed significantly (p < 0.05) higher cytokine levels compared to asymptomatic cases with exception of Eotaxin, which was positively associated with asymptomatic cases. There were also significant (p < 0.05) associations between other immune markers (IL-6, IL-8 and IL-1Ra) and disease severity. Cytokines' clustering patterns differ between symptomatic and asymptomatic cases. We observed a steady decrease in the concentration of most cytokines over time, while anti-SARS-CoV-2 antibody levels were stable for at least a month, regardless of the COVID-19 status. CONCLUSIONS: The findings suggest that genetic background and pre-existing immune response patterns may in part shape the nature of the symptomatic response against COVID-19 in a West African population. This study offers clear directions to be explored further in larger studies.


Assuntos
COVID-19 , Sistema ABO de Grupos Sanguíneos , Biomarcadores , COVID-19/epidemiologia , Citocinas , Gana/epidemiologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-6 , Interleucina-8 , SARS-CoV-2
7.
PLoS Biol ; 20(7): e3001680, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797414

RESUMO

Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.


Assuntos
Pesquisadores , Relatório de Pesquisa , Humanos , Poder Psicológico
8.
J Infect ; 84(1): 48-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606784

RESUMO

Background Controlling the spread of SARS-CoV-2 is problematic because of transmission driven by asymptomatic and pre-symptomatic individuals. Community screening can help identify these individuals but is often too expensive for countries with limited health care resources. Low-cost ELISA assays may address this problem, but their use has not yet been widely reported. Methods We developed a SARS-CoV-2 nucleocapsid ELISA and assessed its diagnostic performance on nose and throat swab samples from UK hospitalised patients and sputum samples from patients in Ghana. Results The ELISA had a limit of detection of 8.4 pg/ml antigen and 16 pfu/ml virus. When tested on UK samples (128 positive and 10 negative patients), sensitivity was 58.6% (49.6-67.2) rising to 78.3% (66.7-87.3) if real-time PCR Ct values > 30 were excluded, while specificity was 100% (69.2-100). In a second trial using the Ghanaian samples (121 positive, 96 negative), sensitivity was 52% (42.8-61.2) rising to 72.6% (61.8-81.2) when a > 30 Ct cut-off was applied, while specificity was 100% (96.2-100). Conclusions: Our data show that nucleocapsid ELISAs can test a variety of patient sample types while achieving levels of sensitivity and specificity required for effective community screening. Further investigations into the opportunities that this provides are warranted.


Assuntos
COVID-19 , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática , Gana , Humanos , Nucleocapsídeo , Sensibilidade e Especificidade
10.
Front Immunol ; 12: 602848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613574

RESUMO

Sepsis is a life-threatening systemic illness attributed to a dysregulated host response to infection. Sepsis is a global burden killing ~11 million persons annually. In December 2019, a novel pneumonia condition termed coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged and has resulted in more than 1,535,982 deaths globally as of 8th December 2020. These two conditions share many pathophysiological and clinical features. Notably, both sepsis and COVID-19 patients experience consumptive thrombocytopenia, haemolytic anaemia, vascular microthrombosis, multi-organ dysfunction syndrome, coagulopathy, septic shock, respiratory failure, fever, leukopenia, hypotension, leukocytosis, high cytokine production and high predisposition to opportunistic infections. Considering the parallels in the immunopathogenesis and pathophysiological manifestations of sepsis and COVID-19, it is highly likely that sepsis care, which has a well-established history in most health systems, could inform on COVID-19 management. In view of this, the present perspective compares the immunopathogenesis and pathophysiology of COVID-19 and non-SARS-CoV-2 induced sepsis, and lessons from sepsis that can be applicable to COVID-19 management.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/fisiologia , Sepse/diagnóstico , Animais , COVID-19/terapia , Síndrome da Liberação de Citocina , Humanos , Hipovolemia , Tolerância Imunológica , Insuficiência Respiratória , Sepse/terapia , Trombose
12.
Wellcome Open Res ; 6: 79, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141425

RESUMO

Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.

13.
Wellcome Open Res ; 6: 22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35310901

RESUMO

After decades of research, our understanding of when and why individuals infected with Plasmodium falciparum develop clinical malaria is still limited. Correlates of immune protection are often sought through prospective cohort studies, where measured host factors are correlated against the incidence of clinical disease over a set period of time. However, robustly inferring individual-level protection from these population-level findings has proved difficult due to small effect sizes and high levels of variance underlying such data. In order to better understand the nature of these inter-individual variations, we analysed the long-term malaria epidemiology of children ≤12 years old growing up under seasonal exposure to the parasite in the sub-location of Junju, Kenya. Despite the cohort's limited geographic expanse (ca. 3km x 10km), our data reveal a high degree of spatial and temporal variability in malaria prevalence and incidence rates, causing individuals to experience varying levels of exposure to the parasite at different times during their life. Analysing individual-level infection histories further reveal an unexpectedly high variability in the rate at which children experience clinical malaria episodes. Besides exposure to the parasite, measured as disease prevalence in the surrounding area, we find that the birth time of year has an independent effect on the individual's risk of experiencing a clinical episode. Furthermore, our analyses reveal that those children with a history of an above average number of episodes are more likely to experience further episodes during the upcoming transmission season. These findings are indicative of phenotypic differences in the rates by which children acquire clinical protection to malaria and offer important insights into the natural variability underlying malaria epidemiology.

14.
Exp Biol Med (Maywood) ; 246(8): 960-970, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325750

RESUMO

The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.


Assuntos
Evolução Molecular , Genoma Viral , Filogenia , SARS-CoV-2/genética , COVID-19/epidemiologia , Gana/epidemiologia , Humanos , SARS-CoV-2/patogenicidade
15.
Malar J ; 19(1): 364, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036624

RESUMO

BACKGROUND: The immune mechanisms that determine whether a Plasmodium falciparum infection would be symptomatic or asymptomatic are not fully understood. Several studies have been carried out to characterize the associations between disease outcomes and leucocyte numbers. However, the majority of these studies have been conducted in adults with acute uncomplicated malaria, despite children being the most vulnerable group. METHODS: Peripheral blood leucocyte subpopulations were characterized in children with acute uncomplicated (symptomatic; n = 25) or asymptomatic (n = 67) P. falciparum malaria, as well as malaria-free (uninfected) children (n = 16) from Obom, a sub-district of Accra, Ghana. Leucocyte subpopulations were enumerated by flow cytometry and correlated with two measures of parasite load: (a) plasma levels of P. falciparum histidine-rich protein 2 (PfHRP2) as a proxy for parasite biomass and (b) peripheral blood parasite densities determined by microscopy. RESULTS: In children with symptomatic P. falciparum infections, the proportions and absolute cell counts of total (CD3 +) T cells, CD4 + T cells, CD8 + T cells, CD19 + B cells and CD11c + dendritic cells (DCs) were significantly lower as compared to asymptomatic P. falciparum-infected and uninfected children. Notably, CD15 + neutrophil proportions and cell counts were significantly increased in symptomatic children. There was no significant difference in the proportions and absolute counts of CD14 + monocytes amongst the three study groups. As expected, measures of parasite load were significantly higher in symptomatic cases. Remarkably, PfHRP2 levels and parasite densities negatively correlated with both the proportions and absolute numbers of peripheral leucocyte subsets: CD3 + T, CD4 + T, CD8 + T, CD19 + B, CD56 + NK, γδ + T and CD11c + cells. In contrast, both PfHRP2 levels and parasite densities positively correlated with the proportions and absolute numbers of CD15 + cells. CONCLUSIONS: Symptomatic P. falciparum infection is correlated with an increase in the levels of peripheral blood neutrophils, indicating a role for this cell type in disease pathogenesis. Parasite load is a key determinant of peripheral cell numbers during malaria infections.


Assuntos
Antígenos de Protozoários/análise , Leucócitos/parasitologia , Malária Falciparum/parasitologia , Carga Parasitária , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/análise , Infecções Assintomáticas , Criança , Feminino , Citometria de Fluxo , Gana , Humanos , Masculino
16.
Elife ; 92020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633721

RESUMO

The eLife Early-Career Advisory Group (ECAG), an international group of early-career researchers committed to improving research culture, calls for radical changes at eLife and other journals to address racism in the scientific community and to make science more diverse and inclusive.


Assuntos
Diversidade Cultural , Equidade de Gênero , Editoração/normas , Racismo/prevenção & controle , Pesquisadores/estatística & dados numéricos , Inclusão Social , Revisão por Pares
17.
Elife ; 92020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216872

RESUMO

The need to protect public health during the current COVID-19 pandemic has necessitated conference cancellations on an unprecedented scale. As the scientific community adapts to new working conditions, it is important to recognize that some of our actions may disproportionately affect early-career researchers and scientists from countries with limited research funding. We encourage all conference organizers, funders and institutions who are able to do so to consider how they can mitigate the unintended consequences of conference and travel cancellations and we provide seven recommendations for how this could be achieved. The proposed solutions may also offer long-term benefits for those who normally cannot attend conferences, and thus lead to a more equitable future for generations of researchers.


Assuntos
Congressos como Assunto/tendências , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Pesquisadores , Viagem , Betacoronavirus , COVID-19 , Mobilidade Ocupacional , Congressos como Assunto/economia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Políticas Editoriais , Humanos , Internet , Relações Interprofissionais , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Saúde Pública , Editoração , Apoio à Pesquisa como Assunto , SARS-CoV-2
18.
Sci Rep ; 9(1): 15853, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676877

RESUMO

Although the spleen is broadly accepted as the major lymphoid organ involved in generating immune responses to the erythrocytic stages of the malaria parasite, Plasmodium, human splenic tissue is not readily available in most cases. As a result, most studies of malaria in humans rely on peripheral blood to assess cellular immune responses to malaria. The suitability of peripheral blood as a proxy for splenic immune responses is however unknown. Here, we have simultaneously analysed the transcriptomes of whole blood and spleen over 12 days of erythrocytic stage Plasmodium chabaudi infection in C57BL/6 mice. Using both unsupervised and directed approaches, we compared gene expression between blood and spleen over the course of infection. Taking advantage of publicly available datasets, we used machine learning approaches to infer cell proportions and cell-specific gene expression signatures from our whole tissue transcriptome data. Our findings demonstrate that spleen and blood are quite dissimilar, sharing only a small amount of transcriptional information between them, with transcriptional differences in both cellular composition and transcriptional activity. These results suggest that while blood transcriptome data may be useful in defining surrogate markers of protection and pathology, they should not be used to predict specific immune responses occurring in lymphoid organs.


Assuntos
Sangue/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Malária/metabolismo , Plasmodium chabaudi/metabolismo , Baço/metabolismo , Animais , Sangue/parasitologia , Feminino , Camundongos , Baço/parasitologia
19.
BMC Med ; 17(1): 60, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30862316

RESUMO

BACKGROUND: There are over 200 million reported cases of malaria each year, and most children living in endemic areas will experience multiple episodes of clinical disease before puberty. We set out to understand how frequent clinical malaria, which elicits a strong inflammatory response, affects the immune system and whether these modifications are observable in the absence of detectable parasitaemia. METHODS: We used a multi-dimensional approach comprising whole blood transcriptomic, cellular and plasma cytokine analyses on a cohort of children living with endemic malaria, but uninfected at sampling, who had been under active surveillance for malaria for 8 years. Children were categorised into two groups depending on the cumulative number of episodes experienced: high (≥ 8) or low (< 5). RESULTS: We observe that multiple episodes of malaria are associated with modification of the immune system. Children who had experienced a large number of episodes demonstrated upregulation of interferon-inducible genes, a clear increase in circulating levels of the immunoregulatory cytokine IL-10 and enhanced activation of neutrophils, B cells and CD8+ T cells. CONCLUSION: Transcriptomic analysis together with cytokine and immune cell profiling of peripheral blood can robustly detect immune differences between children with different numbers of prior malaria episodes. Multiple episodes of malaria are associated with modification of the immune system in children. Such immune modifications may have implications for the initiation of subsequent immune responses and the induction of vaccine-mediated protection.


Assuntos
Doenças do Sistema Imunitário/imunologia , Malária/imunologia , Criança , Pré-Escolar , Humanos
20.
BMC Med ; 14(1): 143, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27660116

RESUMO

BACKGROUND: Naturally acquired immunity to malaria may be lost with lack of exposure. Recent heterogeneous reductions in transmission in parts of Africa mean that large populations of previously protected people may lose their immunity while remaining at risk of infection. METHODS: Using two ethnically similar long-term cohorts of children with historically similar levels of exposure to Plasmodium falciparum who now experience very different levels of exposure, we assessed the effect of decreased parasite exposure on antimalarial immunity. Peripheral blood mononuclear cells (PBMCs) from children in each cohort were stimulated with P. falciparum and their P. falciparum-specific proliferative and cytokine responses were compared. RESULTS: We demonstrate that, while P. falciparum-specific CD4+ T cells are maintained in the absence of exposure, the proliferative capacity of these cells is altered considerably. P. falciparum-specific CD4+ T cells isolated from children previously exposed, but now living in an area of minimal exposure ("historically exposed") proliferate significantly more upon stimulation than cells isolated from children continually exposed to the parasite. Similarly, PBMCs from historically exposed children expressed higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines after stimulation with P. falciparum. Notably, we found a significant positive association between duration since last febrile episode and P. falciparum-specific CD4+ T cell proliferation, with more recent febrile episodes associated with lower proliferation. CONCLUSION: Considered in the context of existing knowledge, these data suggest a model explaining how immunity is lost in absence of continuing exposure to P. falciparum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA