Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Elife ; 122024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808578

RESUMO

Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Mitocôndrias/metabolismo , Mitocôndrias/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Membranas Mitocondriais/metabolismo , Feminino , Metabolismo Energético
2.
Mitochondrion ; 76: 101880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604459

RESUMO

Plasma membrane large-conductance calcium-activated potassium (BKCa) channels are important players in various physiological processes, including those mediated by epithelia. Like other cell types, human bronchial epithelial (HBE) cells also express BKCa in the inner mitochondrial membrane (mitoBKCa). The genetic relationships between these mitochondrial and plasma membrane channels and the precise role of mitoBKCa in epithelium physiology are still unclear. Here, we tested the hypothesis that the mitoBKCa channel is encoded by the same gene as the plasma membrane BKCa channel in HBE cells. We also examined the impact of channel loss on the basic function of HBE cells, which is to create a tight barrier. For this purpose, we used CRISPR/Cas9 technology in 16HBE14o- cells to disrupt the KCNMA1 gene, which encodes the α-subunit responsible for forming the pore of the plasma membrane BKCa channel. Electrophysiological experiments demonstrated that the disruption of the KCNMA1 gene resulted in the loss of BKCa-type channels in the plasma membrane and mitochondria. We have also shown that HBE ΔαBKCa cells exhibited a significant decrease in transepithelial electrical resistance which indicates a loss of tightness of the barrier created by these cells. We have also observed a decrease in mitochondrial respiration, which indicates a significant impairment of these organelles. In conclusion, our findings indicate that a single gene encodes both populations of the channel in HBE cells. Furthermore, this channel is critical for maintaining the proper function of epithelial cells as a cellular barrier.


Assuntos
Brônquios , Células Epiteliais , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Sistemas CRISPR-Cas , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Membrana Celular/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia
3.
Mutat Res Rev Mutat Res ; 793: 108488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266668

RESUMO

The DNA damage response (DDR) is a complex and highly regulated cellular process that detects and repairs DNA damage. The integrity of the DNA molecule is crucial for the proper functioning and survival of cells, as DNA damage can lead to mutations, genomic instability, and various diseases, including cancer. The DDR safeguards the genome by coordinating a series of signaling events and repair mechanisms to maintain genomic stability and prevent the propagation of damaged DNA to daughter cells. The study of an ion channels in the context of DDR is a promising avenue in biomedical research. Lately, it has been reported that the movement of ions through channels plays a crucial role in various physiological processes, including nerve signaling, muscle contraction, cell signaling, and maintaining cell membrane potential. Knowledge regarding the involvement of ion channels in the DDR could support refinement of our approach to several pathologies, mainly cancer, and perhaps lead to innovative therapies. In this review, we focused on the ion channel's possible role in the DDR. We present an analysis of the involvement of ion channels in DDR, their role in DNA repair mechanisms, and cellular outcomes. By addressing these areas, we aim to provide a comprehensive perspective on ion channels in the DDR and potentially guide future research in this field. It is worth noting that the interplay between ion channels and the cellular DDR is complex and multifaceted. More research is needed to fully understand the underlying mechanisms and potential therapeutic implications of these interactions.


Assuntos
Dano ao DNA , Reparo do DNA , Canais Iônicos , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Animais , Instabilidade Genômica , Transdução de Sinais , Neoplasias/genética
4.
Membranes (Basel) ; 13(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37755185

RESUMO

The cells of living organisms are surrounded by the biological membranes that form a barrier between the internal and external environment of the cells. Cell membranes serve as barriers and gatekeepers. They protect cells against the entry of undesirable substances and are the first line of interaction with foreign particles. Therefore, it is very important to understand how substances such as particulate matter (PM) interact with cell membranes. To investigate the effect of PM on the electrical properties of biological membranes, a series of experiments using a black lipid membrane (BLM) technique were performed. L-α-Phosphatidylcholine from soybean (azolectin) was used to create lipid bilayers. PM samples of different diameters (<4 (SRM-PM4.0) and <10 µm (SRM-PM10) were purchased from The National Institute of Standards and Technology (USA) to ensure the repeatability of the measurements. Lipid membranes with incorporated gramicidin A (5 pg/mL) ion channels were used to investigate the effect of PM on ion transport. The ionic current passing through the azolectin membranes was measured in ionic gradients (50/150 mM KCl on cis/trans side). In parallel, the electric membrane capacitance measurements, analysis of the conductance and reversal potential were performed. Our results have shown that PM at concentration range from 10 to 150 µg/mL reduced the basal ionic current at negative potentials while increased it at positive ones, indicating the interaction between lipids forming the membrane and PM. Additionally, PM decreased the gramicidin A channel activity. At the same time, the amplitude of channel openings as well as single channel conductance and reversal potential remained unchanged. Lastly, particulate matter at a concentration of 150 µg/mL did not affect the electric membrane capacity to any significant extent. Understanding the interaction between PM and biological membranes could aid in the search for effective cytoprotective strategies. Perhaps, by the use of an artificial system, we will learn to support the consequences of PM-induced damage.

5.
Mech Ageing Dev ; 215: 111871, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689317

RESUMO

A limited number of studies have shown functional changes in mitochondrial ion channels in aging and senescent cells. We have identified, for the first time, mitochondrial large-conductance calcium-regulated potassium channels in human smooth muscle mitochondria. This channel, with a conductance of 273 pS, was regulated by calcium ions and membrane potential. Additionally, it was activated by the potassium channel opener NS11021 and blocked by paxilline. Importantly, we have shown that senescence of these cells induced by hydrogen peroxide treatment leads to the disappearance of potassium channel protein levels and channel activity measured by the single channel patch-clamp technique. Our data suggest that disturbances in the expression of mitochondrial large conductance calcium-regulated potassium channels may be hallmarks of cellular senescence and contribute to the misregulation of mitochondrial function in senescent cells.


Assuntos
Cálcio , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Potássio/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo
6.
Colloids Surf B Biointerfaces ; 229: 113480, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536168

RESUMO

Understanding the mechanism by which an antibacterial agent interacts with a model membrane provides vital information for better design of future antibiotics. In this study, we investigated two antibacterial polymers, hydrophilic C0-T-p and hydrophobic C8-T-p ionenes, known for their potent antimicrobial activity and ability to disrupt the integrity of lipid bilayers. Our hypothesize is that the composition of a lipid bilayer alters the mechanism of ionenes action, potentially providing an explanation for the observed differences in their bioactivity and selectivity. Calcein release experiments utilizing a range of liposomes to examine the impact of (i) cardiolipin (CL) to phosphatidylglycerol (PG) ratio, (ii) overall vesicle charge, and (iii) phosphatidylethanolamine (PE) to phosphatidylcholine (PC) ratio on the activity of ionenes were performed. Additionally, polymer-bilayer interactions were also investigated through vesicle fusion assay and the black lipid membrane (BLM) technique The activity of C0-T-p is strongly influenced by the amount of cardiolipin, while the activity of C8-T-p primarily depends on the overall vesicle charge. Consequently, C0-T-p acts through interactions with CL, whereas C8-T-p modifies the bulk properties of the membrane in a less-specific manner. Moreover, the presence of a small amount of PC in the membrane makes the vesicle resistant to permeabilization by tested molecules. Intriguingly, more hydrophilic C0-T-p retains higher membrane activity compared to the hydrophobic C8-T-p. However, both ionenes induce vesicle fusion and increase lipid bilayer ion permeability.


Assuntos
Cardiolipinas , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Cardiolipinas/química , Fosfatidilcolinas , Lipossomos/química , Lecitinas , Antibacterianos/farmacologia
7.
Pflugers Arch ; 475(9): 1045-1060, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401985

RESUMO

Mitochondrial potassium (mitoK) channels play an important role in cellular physiology. These channels are expressed in healthy tissues and cancer cells. Activation of mitoK channels can protect neurons and cardiac tissue against injury induced by ischemia-reperfusion. In cancer cells, inhibition of mitoK channels leads to an increase in mitochondrial reactive oxygen species, which leads to cell death. In glioma cell activity of the mitochondrial, large conductance calcium-activated potassium (mitoBKCa) channel is regulated by the mitochondrial respiratory chain. In our project, we used CRISPR/Cas9 technology in human glioblastoma U-87 MG cells to generate knockout cell lines lacking the α-subunit of the BKCa channel encoded by the KCNMA1 gene, which also encodes cardiac mitoBKCa. Mitochondrial patch-clamp experiments showed the absence of an active mitoBKCa channel in knockout cells. Additionally, the absence of this channel resulted in increased levels of mitochondrial reactive oxygen species. However, analysis of the mitochondrial respiration rate did not show significant changes in oxygen consumption in the cell lines lacking BKCa channels compared to the wild-type U-87 MG cell line. These observations were reflected in the expression levels of selected mitochondrial genes, organization of the respiratory chain, and mitochondrial morphology, which did not show significant differences between the analyzed cell lines. In conclusion, we show that in U-87 MG cells, the pore-forming subunit of the mitoBKCa channel is encoded by the KCNMA1 gene. Additionally, the presence of this channel is important for the regulation of reactive oxygen species levels in mitochondria.


Assuntos
Glioblastoma , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glioblastoma/metabolismo , Mitocôndrias/metabolismo , Potássio/metabolismo , Cálcio/metabolismo
8.
Eur Biophys J ; 52(6-7): 569-582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37389670

RESUMO

The activity of mitochondrial large-conductance voltage- and [Formula: see text]-activated [Formula: see text] channels (mitoBK) is regulated by a number of biochemical factors, including flavonoids. In particular, naringenin (Nar) and quercetin (Que) reached reasonable scientific attention due to their well-pronounced channel-activating effects. The open-reinforcing outcomes of Nar and Que on the mitoBK channel gating have been already reported. Nevertheless, the molecular picture of the corresponding channel-ligand interactions remains still to be revealed. In this work, we investigate the effects of the Nar and Que on the conformational dynamics of the mitoBK channel. In this aim, the cross-correlation-based analysis of the single-channel signals recorded by the patch-clamp method is performed. The obtained results in the form of phase space diagrams enable us to visually monitor the effects exerted by the considered flavonoids at the level of temporal characteristics of repetitive sequences of channel conformations. It turns out that the mitoBK channel activation by naringenin and quercetin does not lead to the change in the number of clusters within the phase space diagrams, which can be related to the constant number of available channel macroconformations regardless of the flavonoid administration. The localization and occupancy of the clusters of cross-correlated sequences suggest that mitoBK channel stimulation by flavonoids affects the relative stability of channel conformations and the kinetics of switching between them. For most clusters, greater net effects are observed in terms of quercetin administration in comparison with naringenin. It indicates stronger channel interaction with Que than Nar.


Assuntos
Flavonoides , Quercetina , Flavonoides/farmacologia , Quercetina/farmacologia , Mitocôndrias , Conformação Molecular
9.
Bioelectrochemistry ; 151: 108372, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36680942

RESUMO

The renal-outer-medullary­potassium (ROMK2) channel modulates potassium transport in the kidney. It has been postulated that the ROMK2 is the pore-forming subunit of the mitochondrial ATP-sensitive potassium channel as a mediator of cardioprotection. In this study, cell-free synthesis of the ROMK2 was performed in presence of membrane scaffold protein (MSP1D1) nanodiscs. Activity measurements were achieved after channel reconstitution into the planar lipid bilayer and tethered bilayer lipid membranes. Both methods allowed for monitoring of channel function, verified with channel blocking and activation/re-activation experiments. The primary function of the mitochondrial potassium channels is to regulate the potential of the mitochondrial membrane, which allows them to play an important role in cytoprotection. This work focuses on obtaining the ROMK2 using a cell-free expression system, followed by the incorporation of the channel protein into the lipid bilayer and studying the influence of voltage changes and molecular modulators on channel activity. Channel activity was measured after its reconstitution into two models of lipid bilayers - BLM (Bilayer Lipid Membrane) and tBLM (Tethered Bilayer Lipid Membrane) deposited on a solid gold electrode. These two model membranes and electrochemical measurements made it possible to measure the flux of K+ ions in the presence of channel modulators.


Assuntos
Bicamadas Lipídicas , Canais de Potássio , Bicamadas Lipídicas/química , Mitocôndrias/metabolismo , Proteínas de Membrana/metabolismo , Potássio
10.
J Pharm Pharmacol ; 75(4): 466-481, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36508341

RESUMO

OBJECTIVES: Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels. KEY FINDINGS: A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects. SUMMARY: The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.


Assuntos
Flavonoides , Canais de Potássio , Canais de Potássio/metabolismo , Canais de Potássio/farmacologia , Flavonoides/farmacologia , Flavonoides/metabolismo , Mitocôndrias Cardíacas , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
11.
Antioxidants (Basel) ; 11(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290615

RESUMO

Luteolin (LUT) is a well-known flavonoid that exhibits a number of beneficial properties. Among these, it shows cardioprotective effects, as confirmed by numerous studies. However, its effect on mitochondrial potassium channels, the activation of which is related to cytoprotection, as well as on heart ischemia/reperfusion (I/R) damage prevention, has not yet been investigated. The large conductance calcium-regulated potassium channel (mitoBKCa) has been identified in both the mitochondria of the vascular endothelial cells, which plays a significant role in the functioning of the cardiovascular system under oxidative stress-related conditions, and in the mitochondria of cardiomyocytes, where it is deeply involved in cardiac protection against I/R injury. Therefore, the aim of this study was to explore the role of the mitoBKCa channel in luteolin-induced cytoprotection. A number of in vitro, in vivo, ex vivo and in silico studies have confirmed that luteolin activates this channel in the mitochondria of cardiomyocytes and endothelial cells, which in turn leads to the protection of the endothelium and a significant reduction in the extent of damage resulting from myocardial infarction, where this effect was partially abolished by the mitoBKCa channel blocker paxilline. In conclusion, these results suggest that luteolin has cardioprotective effects, at least in part, through the activation of the mitoBKCa channel, shedding light on a new putative mechanism of action.

12.
PLoS Comput Biol ; 18(7): e1010315, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857767

RESUMO

The large conductance voltage- and Ca2+-activated K+ channels from the inner mitochondrial membrane (mitoBK) are modulated by a number of factors. Among them flavanones, including naringenin (Nar), arise as a promising group of mitoBK channel regulators from a pharmacological point of view. It is well known that in the presence of Nar the open state probability (pop) of mitoBK channels significantly increases. Nevertheless, the molecular mechanism of the mitoBK-Nar interactions remains still unrevealed. It is also not known whether the effects of naringenin administration on conformational dynamics can resemble those which are exerted by the other channel-activating stimuli. In aim to answer this question, we examine whether the dwell-time series of mitoBK channels which were obtained at different voltages and Nar concentrations (yet allowing to reach comparable pops) are discernible by means of artificial intelligence methods, including k-NN and shapelet learning. The obtained results suggest that the structural complexity of the gating dynamics is shaped both by the interaction of channel gate with the voltage sensor (VSD) and the Nar-binding site. For a majority of data one can observe stimulus-specific patterns of channel gating. Shapelet algorithm allows to obtain better prediction accuracy in most cases. Probably, because it takes into account the complexity of local features of a given signal. About 30% of the analyzed time series do not sufficiently differ to unambiguously distinguish them from each other, which can be interpreted in terms of the existence of the common features of mitoBK channel gating regardless of the type of activating stimulus. There exist long-range mutual interactions between VSD and the Nar-coordination site that are responsible for higher levels of Nar-activation (Δpop) at deeply depolarized membranes. These intra-sensor interactions are anticipated to have an allosteric nature.


Assuntos
Flavanonas , Canais de Potássio Cálcio-Ativados , Inteligência Artificial , Cálcio/metabolismo , Flavanonas/farmacologia , Aprendizado de Máquina
13.
J Phys Chem B ; 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652527

RESUMO

The patch-clamp technique is a powerful tool that allows for a long observation of transport protein activity in real time. Experimental traces of single-channel currents can be considered as a record of the channel's conformational switching related to its activation and gating. In this work, we present a mathematically simple method of patch-clamp data analysis that assesses the connectivity and occupancy of distinct conformational substates of the channel. The proposed approach appears to be a big step forward due to its possible applications in the determination of channel substates related to disease and in the analysis of drug-channel interactions on the level of repetitive sequences of channel conformations. This is especially important in cases when molecular dynamics docking is impossible and Markovian modeling requires ambiguous optimization tasks.

14.
Mitochondrion ; 65: 23-32, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504559

RESUMO

Large-conductance calcium-regulated potassium channel (BKCa) is known to play an important role in physiological and pathological processes. Despite the BKCa channel being encoded by one gene, this channel has been found to be located not only in the cell membrane but also in the membranes of intracellular compartments, such as in the inner mitochondrial membrane. With some differences, the mitochondrial BKCa (mitoBKCa) channel has been shown to be activated or inhibited by both synthetic and natural compounds. One of them, paxilline, has been considered to be a canonical blocker of this channel. In the previous study, we showed that the natural origin substance quercetin activates the mitoBKCa channel at ten times lower the concentration compared to channel present in the plasma membrane. Here, using the patch-clamp technique, we report that after inhibition of mitoBKCa channels by paxilline, quercetin activates these channels, indicating a paxilline and quercetin binding competition in the regulation of the mitoBKCa channel. To support our hypothesis, we used an analog of quercetin - isorhamnetin, a substance with one substituent changed. Isorhamnetin has no effect on the mitoBKCa channel activity, and after its application, paxilline fully inhibits the channel. Additionally, the molecular modeling studies were used. The results of docking quercetin and paxilline to the BKCa channel suggest that paxilline cannot bind after activation of the channel with quercetin. It seems that the likely mechanism of this phenomenon is the formation of spatial hindrance by quercetin. The results obtained shed a completely new, groundbreaking in the paxilline context, light on the current knowledge about mitochondrial potassium channel regulation.


Assuntos
Flavonoides , Quercetina , Flavonoides/metabolismo , Indóis , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Mitocôndrias/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia
15.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163132

RESUMO

In this paper, the techniques used to study the function of mitochondrial potassium channels are critically reviewed. The majority of these techniques have been known for many years as a result of research on plasma membrane ion channels. Hence, in this review, we focus on the critical evaluation of techniques used in the studies of mitochondrial potassium channels, describing their advantages and limitations. Functional analysis of mitochondrial potassium channels in comparison to that of plasmalemmal channels presents additional experimental challenges. The reliability of functional studies of mitochondrial potassium channels is often affected by the need to isolate mitochondria and by functional properties of mitochondria such as respiration, metabolic activity, swelling capacity, or high electrical potential. Three types of techniques are critically evaluated: electrophysiological techniques, potassium flux measurements, and biochemical techniques related to potassium flux measurements. Finally, new possible approaches to the study of the function of mitochondrial potassium channels are presented. We hope that this review will assist researchers in selecting reliable methods for studying, e.g., the effects of drugs on mitochondrial potassium channel function. Additionally, this review should aid in the critical evaluation of the results reported in various articles on mitochondrial potassium channels.


Assuntos
Mitocôndrias/metabolismo , Modelos Biológicos , Canais de Potássio/análise , Canais de Potássio/metabolismo , Animais , Humanos , Transporte de Íons
16.
Cell Mol Biol Lett ; 27(1): 3, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979905

RESUMO

BACKGROUND: Calcitriol (an active metabolite of vitamin D) modulates the expression of hundreds of human genes by activation of the vitamin D nuclear receptor (VDR). However, VDR-mediated transcriptional modulation does not fully explain various phenotypic effects of calcitriol. Recently a fast non-genomic response to vitamin D has been described, and it seems that mitochondria are one of the targets of calcitriol. These non-classical calcitriol targets open up a new area of research with potential clinical applications. The goal of our study was to ascertain whether calcitriol can modulate mitochondrial function through regulation of the potassium channels present in the inner mitochondrial membrane. METHODS: The effects of calcitriol on the potassium ion current were measured using the patch-clamp method modified for the inner mitochondrial membrane. Molecular docking experiments were conducted in the Autodock4 program. Additionally, changes in gene expression were investigated by qPCR, and transcription factor binding sites were analyzed in the CiiiDER program. RESULTS: For the first time, our results indicate that calcitriol directly affects the activity of the mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa) from the human astrocytoma (U-87 MG) cell line but not the mitochondrial calcium-independent two-pore domain potassium channel (mitoTASK-3) from human keratinocytes (HaCaT). The open probability of the mitoBKCa channel in high calcium conditions decreased after calcitriol treatment and the opposite effect was observed in low calcium conditions. Moreover, using the AutoDock4 program we predicted the binding poses of calcitriol to the calcium-bound BKCa channel and identified amino acids interacting with the calcitriol molecule. Additionally, we found that calcitriol influences the expression of genes encoding potassium channels. Such a dual, genomic and non-genomic action explains the pleiotropic activity of calcitriol. CONCLUSIONS: Calcitriol can regulate the mitochondrial large-conductance calcium-regulated potassium channel. Our data open a new chapter in the study of non-genomic responses to vitamin D with potential implications for mitochondrial bioenergetics and cytoprotective mechanisms.


Assuntos
Calcitriol , Canais de Potássio Ativados por Cálcio de Condutância Alta , Calcitriol/metabolismo , Calcitriol/farmacologia , Cálcio/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/farmacologia , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp
17.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614079

RESUMO

Particulate matter (PM) exposure increases reactive oxygen species (ROS) levels. It can lead to inflammatory responses and damage of the mitochondria thus inducing cell death. Recently, it has been shown that potassium channels (mitoK) located in the inner mitochondrial membrane are involved in cytoprotection, and one of the mechanisms involves ROS. To verify the cytoprotective role of mitoBKCa, we performed a series of experiments using a patch-clamp, transepithelial electrical resistance assessment (TEER), mitochondrial respiration measurements, fluorescence methods for the ROS level and mitochondrial membrane potential assessment, and cell viability measurements. In the human bronchial epithelial cell model (16HBE14σ), PM < 4 µm in diameter (SRM-PM4.0) was used. We observed that PM decreased TEER of HBE cell monolayers. The effect was partially abolished by quercetin, a mitoBKCa opener. Consequently, quercetin decreased the mitochondrial membrane potential and increased mitochondrial respiration. The reduction of PM-induced ROS level occurs both on cellular and mitochondrial level. Additionally, quercetin restores HBE cell viability after PM administration. The incubation of cells with PM substantially reduced the mitochondrial function. Isorhamnetin had no effect on TEER, the mitoBKCa activity, respiratory rate, or mitochondrial membrane potential. Obtained results indicate that PM has an adverse effect on HBE cells at the cellular and mitochondrial level. Quercetin is able to limit the deleterious effect of PM on barrier function of airway epithelial cells. We show that the effect in HBE cells involves mitoBKCa channel-activation. However, quercetin's mechanism of action is not exclusively determined by modulation of the channel activity.


Assuntos
Material Particulado , Quercetina , Humanos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo
18.
Biomed Pharmacother ; 142: 112039, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392086

RESUMO

Mitochondrial potassium channels have been implicated in cytoprotective mechanisms. Activation of the mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channel is important for protecting brain tissue against stroke damage as well as heart tissue against ischemia damage. In this paper, we examine the effect of the natural flavonoid quercetin as an activator of the mitoBKCa channel. Quercetin has a beneficial effect on many processes in the human body and interacts with many receptors and signaling pathways. We found that quercetin acts on mitochondria as a mitoBKCa channel opener. The activation observed with the patch-clamp technique was potent and increased the channel open probability from approximately 0.35 to 0.95 at + 40 mV in the micromolar concentration range. Moreover, quercetin at a concentration of 10 µM protected cells by reducing damage from treatment factors (tumor necrosis factor α and cycloheximide) by 40%, enhancing cellular migration and depolarizing the mitochondrial membrane. Moreover, the presence of quercetin increased the gene expression and protein level of the mitoBKCa ß3 regulatory subunit. The observed cytoprotective effects suggested the involvement of BKCa channel activation. Additionally, the newly discovered mitoBKCa activator quercetin elucidates a new mitochondrial pathway that is beneficial for vascular endothelial cells.


Assuntos
Células Endoteliais/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Quercetina/farmacologia , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Técnicas de Patch-Clamp
19.
Cells ; 10(6)2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205420

RESUMO

Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Canais de Potássio/metabolismo , Animais , Humanos , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia
20.
Phys Med ; 88: 250-261, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34315001

RESUMO

PURPOSE: The field of online monitoring of the beam range is one of the most researched topics in proton therapy over the last decade. The development of detectors that can be used for beam range verification under clinical conditions is a challenging task. One promising possible solution are modalities that record prompt-gamma radiation produced by the interactions of the proton beam with the target tissue. A good understanding of the energy spectra of the prompt gammas and the yields in certain energy regions is crucial for a successful design of a prompt-gamma detector. Monte-Carlo simulations are an important tool in development and testing of detector concepts, thus the proper modelling of the prompt-gamma emission in those simulations are of vital importance. In this paper, we confront a number of GEANT4 simulations of prompt-gamma emission, performed with different versions of the package and different physics lists, with experimental data obtained from a phantom irradiation with proton beams of four different energies in the range 70-230 MeV. METHODS: The comparison is made on different levels: features of the prompt-gamma energy spectrum, gamma emission depth profiles for discrete transitions and the width of the distal fall-off in those profiles. RESULTS: The best agreement between the measurements and the simulations is found for the GEANT4 version 10.4.2 and the reference physics list QGSP_BIC_HP. CONCLUSIONS: Modifications to prompt-gamma emission modelling in higher versions of the software increase the discrepancy between the simulation results and the experimental data.


Assuntos
Terapia com Prótons , Raios gama , Método de Monte Carlo , Imagens de Fantasmas , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA