Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 36(1): 233-243, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28636254

RESUMO

A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018.


Assuntos
Disco Intervertebral/patologia , Fatores Etários , Animais , Feminino , Degeneração do Disco Intervertebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos
2.
J Cell Commun Signal ; 10(2): 137-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27173473

RESUMO

Degeneration of the intervertebral disc (IVD) is a major underlying contributor to back pain-the single leading cause of disability worldwide. However, we possess a limited understanding of the etiology underlying IVD degeneration. To date, there are a limited number of mouse models that have been used to target proteins in specific compartments of the IVD to explore their functions in disc development, homeostasis and disease. Furthermore, the majority of reports exploring the composition and function of the outer encapsulating annulus fibrosus (AF) of the IVD have considered it as one tissue, without considering the numerous structural and functional differences existing between the inner and outer AF. In addition, no mouse models have yet been reported that enable specific targeting of genes within the outer AF. In the current report, we discuss these issues and demonstrate the localized activity of Cre recombinase in the IVD of Col1a2-Cre(ER)T;ROSA26mTmG mice possessing a tamoxifen-dependent Cre recombinase driven by a Cola2 promoter and distal enhancer and the mTmG fluorescent reporter. Following tamoxifen injection of 3-week-old Col1a2-Cre(ER)T;ROSA26mTmG mice, we show Cre activity specifically in the outer AF of the IVD, as indicated by expression of the GFP reporter. Thus, Col1a2-Cre(ER)T;ROSA26mTmG mice may prove to be a valuable tool in delineating the function of proteins in this unique compartment of the IVD, and in further exploring the compositional differences between the inner and outer AF in disc homeostasis, aging and disease.

3.
PLoS One ; 10(7): e0133989, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226617

RESUMO

BACKGROUND: Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. METHODS & RESULTS: A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. SIGNIFICANCE: This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.


Assuntos
Acetilcolina/fisiologia , Neurotransmissores/fisiologia , Retina/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/fisiologia , Animais , Western Blotting , Eletrorretinografia , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Nervo Óptico/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/fisiologia , Tomografia de Coerência Óptica , Proteínas Vesiculares de Transporte de Acetilcolina/genética
4.
Matrix Biol ; 37: 124-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24874179

RESUMO

The so-called "matricellular" proteins have recently emerged as important regulators of cell-extracellular matrix (ECM) interactions. These proteins modulate a variety of cell functions through a range of interactions with cell-surface receptors, hormones, proteases and structural components of the ECM. As such, matricellular proteins are crucial regulators of cell phenotype, and consequently tissue function. The distinct cell types and microenvironments that together form the IVD provide an excellent paradigm to study how matricellular proteins mediate communication within and between adjacent tissue types. In recent years, the role of several matricellular proteins in the intervertebral disc has been explored in vivo using mutant mouse models in which the expression of target matricellular proteins was deleted from either one or all compartments of the intervertebral disc. The current review outlines what is presently known about the roles of the matricellular proteins belonging to the CCN family, SPARC (Secreted Protein, Acidic, and Rich in Cysteine), and thrombospondin (TSP) 2 in regulating intervertebral disc cell-ECM interactions, ECM synthesis and disc tissue homeostasis using genetically modified mouse models. Furthermore, we provide a brief overview of recent preliminary studies of other matricellular proteins including, periostin (POSTN) and tenascin (TN). Each specific tissue type of the IVD contains a different matricellular protein signature, which varies based on the specific stage of development, maturity or disease. A growing body of direct genetic evidence links IVD development, maintenance and repair to the coordinate interaction of matricellular proteins within their respective niches and suggests that several of these signaling modulators hold promise in the development of diagnostics and/or therapeutics targeting intervertebral disc aging and/or degeneration.


Assuntos
Comunicação Celular/fisiologia , Microambiente Celular/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Disco Intervertebral/citologia , Transdução de Sinais/fisiologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Moléculas de Adesão Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Proteínas da Matriz Extracelular/metabolismo , Humanos , Disco Intervertebral/metabolismo , Osteonectina/metabolismo , Tenascina/metabolismo , Trombospondinas/metabolismo
5.
Arthritis Rheum ; 65(10): 2634-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23839921

RESUMO

OBJECTIVE: Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. METHODS: Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. RESULTS: Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. CONCLUSION: Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/deficiência , Degeneração do Disco Intervertebral/fisiopatologia , Disco Intervertebral/embriologia , Disco Intervertebral/fisiopatologia , Notocorda/embriologia , Notocorda/fisiopatologia , Agrecanas/fisiologia , Envelhecimento/fisiologia , Animais , Colágeno Tipo I/fisiologia , Colágeno Tipo II/fisiologia , Fator de Crescimento do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário/fisiologia , Feminino , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Notocorda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA