Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39446116

RESUMO

The adsorption of CO and oxygen and CO oxidation on size-selected Pt10 clusters were studied by indirect nanoplasmonic sensing (INPS) in the pressure range of 1-100 Pa at T = 418 K. CO adsorption was reversible, inducing a blue-shift in the localised surface plasmon resonance (LSPR) response, regardless of the initial CO pressure. We observe a plateau at approximately Δλ = -0.1 nm at PCO > 2.7 Pa, indicating saturation of CO adsorption on Pt10 clusters. Oxygen induces both chemisorption and oxidation of Pt10 clusters until a regime is reached where Δλmax remains positive and constant, showing that the Pt10 clusters are completely oxidised. CO oxidation at different molar fractions is also followed by INPS. All results are discussed in relation to our previous works on 3 nm Pt nanocubes [B. Demirdjian, I. Ozerov, F. Bedu, A. Ranguis and C. R. Henry, ACS Omega, 2021, 6, 13398-13405]. The study demonstrates the suitability of INPS towards the understanding of the nature and function of matter in the largely unexplored subnanometer size regime where properties can often dramatically change when altering the particle size by a single atom.

2.
ACS Nano ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159194

RESUMO

The advent of metasurfaces has revolutionized the design of optical instruments, and recent advancements in fabrication techniques are further accelerating their practical applications. However, conventional top-down fabrication of intricate nanostructures proves to be expensive and time-consuming, posing challenges for large-scale production. Here, we propose a cost-effective bottom-up approach to create nanostructure arrays with arbitrarily complex meta-atoms displaying single nanoparticle lateral resolution over submillimeter areas, minimizing the need for advanced and high-cost nanofabrication equipment. By utilizing air/water interface assembly, we transfer nanoparticles onto templated polydimethylsiloxane (PDMS) irrespective of nanopattern density, shape, or size. We demonstrate the robust assembly of nanocubes into meta-atoms with diverse configurations generally unachievable by conventional methods, including U, L, cross, S, T, gammadion, split-ring resonators, and Pancharatnam-Berry metasurfaces with designer optical functionalities. We also show nanocube epitaxy at near ambient temperature to transform the meta-atoms into complex continuous nanostructures that can be swiftly transferred from PDMS to various substrates via contact printing. Our approach potentially offers a large-scale manufacturing alternative to top-down fabrication for metal nanostructuring, unlocking possibilities in the realm of nanophotonics.

3.
iScience ; 26(10): 107714, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37701573

RESUMO

Lamin A/C is a well-established key contributor to nuclear stiffness and its role in nucleus mechanical properties has been extensively studied. However, its impact on whole-cell mechanics has been poorly addressed, particularly concerning measurable physical parameters. In this study, we combined microfluidic experiments with theoretical analyses to quantitatively estimate the whole-cell mechanical properties. This allowed us to characterize the mechanical changes induced in cells by lamin A/C alterations and prelamin A accumulation resulting from atazanavir treatment or lipodystrophy-associated LMNA R482W pathogenic variant. Our results reveal a distinctive increase in long-time viscosity as a signature of cells affected by lamin A/C alterations. Furthermore, they show that the whole-cell response to mechanical stress is driven not only by the nucleus but also by the nucleo-cytoskeleton links and the microtubule network. The enhanced cell viscosity assessed with our microfluidic assay could serve as a valuable diagnosis marker for lamin-related diseases.

4.
Nanoscale Adv ; 5(6): 1681-1690, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926560

RESUMO

Hybrid van der Waals heterostructures made of 2D materials and organic molecules exploit the high sensitivity of 2D materials to all interfacial modifications and the inherent versatility of the organic compounds. In this study, we are interested in the quinoidal zwitterion/MoS2 hybrid system in which organic crystals are grown by epitaxy on the MoS2 surface and reorganize in another polymorph after thermal annealing. By means of field-effect transistor measurements recorded in situ all along the process, atomic force microscopy and density functional theory calculations we demonstrate that the charge transfer between quinoidal zwitterions and MoS2 strongly depends on the conformation of the molecular film. Remarkably, both the field effect mobility and the current modulation depth of the transistors remain unchanged which opens up promising prospects for efficient devices based on this hybrid system. We also show that MoS2 transistors enable fast and accurate detection of structural modifications that occur during phases transitions of the organic layer. This work highlights that MoS2 transistors are remarkable tools for on-chip detection of molecular events occurring at the nanoscale, which paves the way for the investigation of other dynamical systems.

5.
Nano Lett ; 21(13): 5606-5613, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34170136

RESUMO

Protein patterning has emerged as a powerful means to interrogate adhering cells. However, the tools to apply a sub-micrometer periodic stimulus and the analysis of the response are still being standardized. We propose a technique combining electron beam lithography and surface functionalization to fabricate nanopatterns compatible with advanced imaging. The repetitive pattern enables a deep-learning algorithm to reveal that T cells organize their membrane and actin network differently depending upon whether the ligands are clustered or homogeneously distributed, an effect invisible to the unassisted human eye even after extensive image analysis. This fabrication and analysis toolbox should be useful, both together and separately, for exploring general correlation between a spatially structured subcellular stimulation and a subtle cellular response.


Assuntos
Inteligência Artificial , Linfócitos T , Humanos , Inteligência , Ligantes , Impressão
6.
ACS Omega ; 6(20): 13398-13405, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056487

RESUMO

We used indirect nanoplasmonic sensing (INPS) coupled with mass spectrometry to study CO and oxygen adsorption as well as CO oxidation, on Pt nanoparticles, in the Torr pressure range. Due to an optimization of the physical parameters of our plasmonic sample, we obtain a highly sensitive probe that can detect gas adsorption of a few hundredths of a monolayer, even with a very low number density of Pt particles. Moreover and for the first time, a similarity is observed between the sign and the evolution of the localized surface plasmon resonance (LSPR) peak shift and the work function measurements for CO and oxygen chemisorption. Controlling the size, shape, and surface density of Pt particles, the turnover frequency (TOF) has also been accurately determined. For similar experimental conditions, the TOF is close to those measured on Pt/oxide powder catalysts and Pt(100) single crystals.

7.
Sci Rep ; 10(1): 3581, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32108170

RESUMO

Understanding how animals respond to injury and how wounds heal remains a challenge. These questions can be addressed using genetically tractable animals, including the nematode Caenorhabditis elegans. Given its small size, the current methods for inflicting wounds in a controlled manner are demanding. To facilitate and accelerate the procedure, we fabricated regular arrays of pyramidal features ("pins") sharp enough to pierce the tough nematode cuticle. The pyramids were made from monocrystalline silicon wafers that were micro-structured using optical lithography and alkaline wet etching. The fabrication protocol and the geometry of the pins, determined by electron microscopy, are described in detail. We also used electron microscopy to characterize the different types of injury caused by these pins. Upon wounding, C. elegans expresses genes encoding antimicrobial peptides. A comparison of the induction of antimicrobial peptide gene expression using traditional needles and the pin arrays demonstrates the utility of this new method.


Assuntos
Caenorhabditis elegans/fisiologia , Silício/química , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microscopia Eletrônica
8.
PLoS One ; 13(12): e0207881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540777

RESUMO

Macroscopic properties of physical and biological processes like friction, wetting, and adhesion or cell migration are controlled by interfacial properties at the nanoscopic scale. In an attempt to bridge simultaneously investigations at different scales, we demonstrate here how optical microscopy in Wet-Surface Ellipsometric Enhanced Contrast (Wet-SEEC) mode offers imaging and measurement of thin films at solid/liquid interfaces in the range 1-500 nm with lateral optical resolution. A live, label-free and noninvasive methodology integrated with microfluidic devices allowed here characterization of polymers and proteins patterns together with corresponding phenotypes of living cells.


Assuntos
Microscopia/métodos , Tomografia Computadorizada por Raios X/métodos , Fricção , Polímeros , Propriedades de Superfície , Molhabilidade
9.
Langmuir ; 34(19): 5381-5385, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29678113

RESUMO

We demonstrate in this work that using nanoplasmonic sensing it is possible to follow the adsorption/desorption of water molecules on gold nanodisks nanofabricated by electron beam lithography. This quantitative method is highly sensitive allowing the detection of a few hundredths of adsorbed monolayer. Disk parameters (height, diameter, and interdisk distance) have been optimized after finite-difference time-domain (FDTD) simulations in order to obtain the best localized surface plasmon resonance (LSPR) signal-to-noise ratio. Finally, we have precisely measured the adsorption kinetics of water on gold as a function of the relative humidity of the surrounding medium.

10.
Biosens Bioelectron ; 104: 102-112, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331424

RESUMO

When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLRair, PSLRwat for air and water, respectively) and substrate (PSLRsub) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 105 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Biotina/química , Ouro/química , Nanotecnologia , Estreptavidina/química
11.
Small ; 13(32)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28649736

RESUMO

Nanoparticles delivering drugs, disseminating cancer cells, and red blood cells (RBCs) during splenic filtration must deform and pass through the sub-micrometer and high aspect ratio interstices between the endothelial cells lining blood vessels. The dynamics of passage of particles/cells through these slit-like interstices remain poorly understood because the in vitro reproduction of slits with physiological dimensions in devices compatible with optical microscopy observations requires expensive technologies. Here, novel microfluidic PDMS devices containing high aspect ratio slits with sub-micrometer width are molded on silicon masters using a simple, inexpensive, and highly flexible method combining standard UV lithography and anisotropic wet etching. These devices enabled revealing novel modes of deformations of healthy and diseased RBCs squeezing through splenic-like slits (0.6-2 × 5-10 × 1.6-11 µm3 ) under physiological interstitial pressures. At the slit exit, the cytoskeleton of spherocytic RBCs seemed to be detached from the lipid membrane whereas RBCs from healthy donors and patients with sickle cell disease exhibited peculiar tips at their front. These tips disappeared much slower in patients' cells, allowing estimating a threefold increase in RBC cytoplasmic viscosity in sickle cell disease. Measurements of time and rate of RBC sequestration in the slits allowed quantifying the massive trapping of spherocytic RBCs.


Assuntos
Biomimética , Eritrócitos/citologia , Anemia Falciforme/sangue , Estudos de Casos e Controles , Dimetilpolisiloxanos/química , Humanos , Microfluídica
12.
Nano Lett ; 16(8): 5143-51, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27399057

RESUMO

Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility.

13.
ACS Nano ; 10(8): 7761-7, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27458790

RESUMO

The photonic resonances hosted by nanostructures provide vivid colors that can be used as color filters instead of organic colors and pigments in photodetectors and printing technology. Metallic nanostructures have been widely studied due to their ability to sustain surface plasmons that resonantly interact with light. Most of the metallic nanoparticles behave as point-like electric multipoles. However, the needs of an another degree of freedom to tune the color of the photonic nanostructure together with the use of a reliable and cost-effective material are growing. Here, we report a technique to imprint colored images based on silicon nanoparticles that host low-order electric and magnetic Mie resonances. The interplay between the electric and magnetic resonances leads to a large palette of colors. This all-dielectric fabrication technique offers the advantage to use cost-effective, reliable, and sustainable materials to provide vivid color spanning the whole visible spectrum. The interest and potential of this all-dielectric printing technique are highlighted by reproducing at a micrometer scale a Mondrian painting.

14.
Sci Rep ; 6: 24947, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109643

RESUMO

Light reflection occuring at the surface of silicon wafers is drastically diminished by etching square pillars of height 110 nm and width 140 nm separated by a 100 nm gap distance in a square lattice. The design of the nanostructure is optimized to widen the spectral tolerance of the antireflective coatings over the visible spectrum for both fundamental polarizations. Angle and polarized resolved optical measurements report a light reflection remaining under 5% when averaged in the visible spectrum for both polarizations in a wide angular range. Light reflection remains almost insensitive to the light polarization even in oblique incidence.

15.
J Phys Chem Lett ; 6(20): 4148-52, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26722790

RESUMO

We demonstrate in this work that the indirect nanoplasmonic sensing lets us follow the adsorption/desorption of water molecules on soot particles that are a major contributor of the global warming. Increasing the relative humidity of the surrounding medium we measure a shift in wavelength of the localized surface plasmon resonance response of gold nanodisks on which soot particles are deposited. We show a singular and reversible blue shift with hydrophilic aircraft soot particles interpreted from a basic model as a reversible morphological change of the soot aggregates. This new method is highly sensitive and interesting to follow the change of optical properties of aerosols during their aging in the atmosphere, where they can adsorb and react with different gas molecules.

16.
Opt Lett ; 39(16): 4723-6, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121858

RESUMO

The diffractive behavior of arrays of square coaxial apertures in a gold layer is studied. These structures exhibit a resonant transmission enhancement that is used to design tunable bandpass filters for multispectral imaging in the 7-13 µm wavelength range. A modal analysis is used for this design and the study of their spectral features. Thus we show that the resonance peak is due to the excitation of leaky modes of the open photonic structure. Fourier transform infrared (FTIR) spectrophotometry transmission measurements of samples deposited on Si substrate show good agreement with numerical results and demonstrate angular tolerance of up to 30 degrees of the fabricated filters.

17.
Biosens Bioelectron ; 54: 571-7, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333568

RESUMO

Field effect transistors have risen as one of the most promising techniques in the development of biomedical diagnosis and monitoring. In such devices, the sensitivity and specificity of the sensor rely on the properties of the active sensing layer (gate dielectric and probe layer). We propose here a new type of transistor developed for the detection of Fe(3+) ions in which this sensing layer is made of a monolayer of lipids, engineered in such a way that it is not sensitive to pH in the acidic range, therefore making the device perfectly suitable for biomedical diagnosis. Probes are γ-pyrone derivatives that have been grafted to the lipid headgroups. Affinity constants derived for the chelator/Fe(3+) complexation as well as for other ions demonstrate very high sensitivity and specificity towards ferric ions with values as high as 5.10(10) M and a detected concentration as low as 50 fM.


Assuntos
Técnicas Biossensoriais/instrumentação , Compostos Férricos/análise , Ferro/análise , Lipídeos/química , Pironas/química , Transistores Eletrônicos , Cátions/análise , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA