RESUMO
Fabrication, characterization, and laser performance of an Yb:Lu2O3 planar waveguide laser are reported. Pulsed laser deposition was employed to grow an 8 µm-thick Yb-doped lutetia waveguide on a YAG substrate. X-ray diffraction was used to determine the crystallinity, and spectroscopic characterization showed the absorption and emission cross-sections were indistinguishable from those reported for bulk material. When end-pumped by a diode-laser bar an output power of 7.4 W was achieved, limited by the available pump power, at a wavelength of 1033 nm and a slope efficiency of 38% with respect to the absorbed pump power.
RESUMO
In this Letter, we present a passively Q-switched Yb:Y2O3 waveguide laser using evanescent-field interaction with an atmospheric-pressure-chemical-vapor-deposited graphene saturable absorber. The waveguide, pumped by a broad area diode laser, produced an average output power of 456 mW at an absorbed power of 4.1 W. The corresponding pulse energy and peak power were 330 nJ and 2 W, respectively. No graphene damage was observed, demonstrating the suitability of top-deposited graphene for high-power operation.
Assuntos
Grafite , Lasers de Estado Sólido , Fenômenos Ópticos , Absorção Fisico-Química , Equipamentos e Provisões Elétricas , Grafite/químicaRESUMO
Fabrication, characterization and laser performance of a Watt-level ytterbium-doped yttria waveguide laser is presented. The waveguide was grown onto a YAG substrate by pulsed laser deposition and features a 6 µm thick ytterbium-doped yttria layer sandwiched between two 3 µm undoped yttria layers. The laser deposited film was characterized by X-ray diffraction, showing a high degree of crystallinity and analyzed spectroscopically, showing performance indistinguishable from previously reported bulk material. When pumped with 8.5 W from a broad area diode laser the waveguide laser produces 1.2 W of output at 1030 nm.
RESUMO
A compact mid-infrared channel waveguide laser is demonstrated in Cr:ZnS with a view to power scaling chromium laser technology utilizing the thermo-mechanical advantages of Cr:ZnS over alternative transition metal doped II-VI semiconductor laser materials. The laser provided a maximum power of 101 mW of CW output at 2333 nm limited only by the available pump power. A maximum slope efficiency of 20% was demonstrated.
RESUMO
We report a Cr:ZnSe channel waveguide laser operating at 2486 nm. A maximum power output of 285 mW is achieved and slope efficiencies as high as 45% are demonstrated. Ultrafast laser inscription is used to fabricate the depressed cladding waveguide in a polycrystalline Cr:ZnSe sample. Waveguide structures are proposed as a compact and robust solution to the thermal lensing problem that has so far limited power scaling of transition metal doped II-VI lasers.
RESUMO
We fabricate a saturable absorber mirror by coating a graphene- film on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ~1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass.
Assuntos
Grafite/química , Lasers , Lentes , Membranas Artificiais , Ressonância de Plasmônio de Superfície/instrumentação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
An Er-doped bismuthate glass waveguide amplifier has been fabricated using ultrafast laser inscription. Under zero pump conditions, the 87.0 mm long waveguide exhibited a fiber-to-fiber insertion loss of 4.0 dB at 1618 nm, outside the Er(3+) ion absorption band. We attribute approximately 1.8 dB of the insertion loss to coupling losses, 0.2 dB to Fresnel reflections and approximately 2.0 dB to propagation losses. When pumped using 1050 mW of 980 nm light, the amplifier exhibited a peak internal gain per unit length of 2.3 dB.cm(-1) at 1533 nm and a peak fiber-to-fiber net gain of 16.0 dB at 1533 nm. In this paper we also report the results of output power saturation and noise figure measurements.