Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37259295

RESUMO

Cerenkov-induced photodynamic therapy (CR-PDT) with the use of Gallium-68 (68Ga) as an unsealed radioactive source has been proposed as an alternative strategy to X-ray-induced photodynamic therapy (X-PDT). This new strategy still aims to produce a photodynamic effect with the use of nanoparticles, namely, AGuIX. Recently, we replaced Gd from the AGuIX@ platform with Terbium (Tb) as a nanoscintillator and added 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenylporphyrin (P1) as a photosensitizer (referred to as AGuIX@Tb-P1). Although Cerenkov luminescence from 68Ga positrons is involved in nanoscintillator and photosensitizer activation, the cytotoxic effect obtained by PDT remains controversial. Herein, we tested whether free 68Ga could substitute X-rays of X-PDT to obtain a cytotoxic phototherapeutic effect. Results were compared with those obtained with AGuIX@Gd-P1 nanoparticles. We showed, by Monte Carlo simulations, the contribution of Tb scintillation in P1 activation by an energy transfer between Tb and P1 after Cerenkov radiation, compared to the Gd-based nanoparticles. We confirmed the involvement of the type II PDT reaction during 68Ga-mediated Cerenkov luminescence, id est, the transfer of photon to AGuIX@Tb-P1 which, in turn, generated P1-mediated singlet oxygen. The effect of 68Ga on cell survival was studied by clonogenic assays using human glioblastoma U-251 MG cells. Exposure of pre-treated cells with AGuIX@Tb-P1 to 68Ga resulted in the decrease in cell clone formation, unlike AGuIX@Gd-P1. We conclude that CR-PDT could be an alternative of X-PDT.

2.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202730

RESUMO

18F-labelled radiopharmaceuticals are indispensable in positron emission tomography. The critical step in the preparation of 18F-labelled tracers is the anhydrous F-18 nucleophilic substitution reaction, which involves [18F]F- anions generated in aqueous media by the cyclotron. For this, azeotropic drying by distillation is widely used in standard synthesisers, but microfluidic systems are often not compatible with such a process. To avoid this step, several methods compatible with aqueous media have been developed. We summarised the existing approaches and two of them have been studied in detail. [18F]fluoride elution efficiencies have been investigated under different conditions showing high 18F-recovery. Finally, a large scope of precursors has been assessed for radiochemical conversion, and these hydrous labelling techniques have shown their potential for tracer production using a microfluidic approach, more particularly compatible with iMiDEV™ cassette volumes.


Assuntos
Fluoretos , Compostos Radiofarmacêuticos , Microfluídica , Tomografia por Emissão de Pósitrons , Ciclotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA