Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(6): 1756-1768, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363631

RESUMO

Delivery and focusing of radiation requires a variety of optical elements such as waveguides and mirrors or lenses. Heretofore, they were used separately, the former for radiation delivery, the latter for focusing. Here, we show that cylindrical multimode waveguides can both deliver and simultaneously focus radiation, without any external lenses or parabolic mirrors. We develop an analytical, ray-optical model to describe radiation propagation within and after the end of cylindrical multimode waveguides and demonstrate the focusing effect theoretically and experimentally at terahertz frequencies. In the focused spot, located at a distance of several millimeters to a few centimeters away from the waveguide end, typical for focal lengths in optical setups, we achieve a more than 8.4× higher intensity than the cross-sectional average intensity and compress the half-maximum spot area of the incident beam by a factor of >15. Our results represent the first practical realization of a focusing system consisting of only a single cylindrical multimode waveguide, that delivers radiation from one focused spot into another focused spot in free space, with focal distances that are much larger than both the radiation wavelength and the waveguide radius. The results enable design and optimization of cylindrical waveguide-containing systems and demonstrate a precise optical characterization method for cylindrical structures and objects.

2.
ACS Nano ; 17(6): 6103-6112, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36883532

RESUMO

The on-chip integration of two-dimensional nanomaterials, having exceptional optical, electrical, and thermal properties, with terahertz (THz) quantum cascade lasers (QCLs) has recently led to wide spectral tuning, nonlinear high-harmonic generation, and pulse generation. Here, we transfer a large area (1 × 1 cm2) multilayer graphene (MLG), to lithographically define a microthermometer, on the bottom contact of a single-plasmon THz QCL to monitor, in real-time, its local lattice temperature during operation. We exploit the temperature dependence of the MLG electrical resistance to measure the local heating of the QCL chip. The results are further validated through microprobe photoluminescence experiments, performed on the front-facet of the electrically driven QCL. We extract a heterostructure cross-plane conductivity of k⊥= 10.2 W/m·K, in agreement with previous theoretical and experimental reports. Our integrated system endows THz QCLs with a fast (∼30 ms) temperature sensor, providing a tool to reach full electrical and thermal control on laser operation. This can be exploited, inter alia, to stabilize the emission of THz frequency combs, with potential impact on quantum technologies and high-precision spectroscopy.

3.
Adv Sci (Weinh) ; 10(9): e2206824, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707499

RESUMO

Mode locking, the self-starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode-locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated via optical pumping, even without the emission of short pulses. Here, by exploiting the combination of the inherently giant third-order χ(3) nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene, the authors demonstrate mode-locking in surface-emitting electrically pumped random quantum cascade lasers at terahertz frequencies. This is achieved by either lithographically patterning a multilayer graphene film to define a surface random pattern of light scatterers, or by coupling on chip a saturable absorber graphene reflector. Intermode beatnote mapping unveils self-induced phase-coherence between naturally incoherent random modes. Self-mixing intermode spectroscopy reveals phase-locked random modes. This is an important milestone in the physics of disordered systems. It paves the way to the development of a new generation of miniaturized, electrically pumped mode-locked light sources, ideal for broadband spectroscopy, multicolor speckle-free imaging applications, and reservoir quantum computing.

4.
Sci Adv ; 8(15): eabi8398, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427162

RESUMO

Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli-electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena. Here, we report on the observation of a quantum, collision-free phenomenon that yields a giant photoresponse at terahertz frequencies (1.9 THz), more than 10-fold as large as expected from plasmonic mixing. We artificially create an electrically tunable potential step within a degenerate two-dimensional electron gas. When exposed to terahertz radiation, electrons absorb photons and generate a large photocurrent under zero source-drain bias. The observed phenomenon, which we call the "in-plane photoelectric effect," provides an opportunity for efficient direct detection across the entire terahertz range.

5.
ACS Nano ; 16(2): 2833-2842, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35109656

RESUMO

Magnetic field-driven insulating states in graphene are associated with samples of very high quality. Here, this state is shown to exist in monolayer graphene grown by chemical vapor deposition (CVD) and wet transferred on Al2O3 without encapsulation with hexagonal boron nitride (h-BN) or other specialized fabrication techniques associated with superior devices. Two-terminal measurements are performed at low temperature using a GaAs-based multiplexer. During high-throughput testing, insulating properties are found in a 10 µm long graphene device which is 10 µm wide at one contact with an ≈440 nm wide constriction at the other. The low magnetic field mobility is ≈6000 cm2 V-1 s-1. An energy gap induced by the magnetic field opens at charge neutrality, leading to diverging resistance and current switching on the order of 104 with DC bias voltage at an approximate electric field strength of ≈0.04 V µm-1 at high magnetic field. DC source-drain bias measurements show behavior associated with tunneling through a potential barrier and a transition between direct tunneling at low bias to Fowler-Nordheim tunneling at high bias from which the tunneling region is estimated to be on the order of ≈100 nm. Transport becomes activated with temperature from which the gap size is estimated to be 2.4 to 2.8 meV at B = 10 T. Results suggest that a local electronically high quality region exists within the constriction, which dominates transport at high B, causing the device to become insulating and act as a tunnel junction. The use of wet transfer fabrication techniques of CVD material without encapsulation with h-BN and the combination with multiplexing illustrates the convenience of these scalable and reasonably simple methods to find high quality devices for fundamental physics research and with functional properties.

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34835762

RESUMO

Metamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device's optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (Tc) of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.

7.
Opt Express ; 29(21): 33602-33614, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809170

RESUMO

Quantum cascade lasers (QCLs) represent a most promising compact source at terahertz (THz) frequencies, but efficiency of their continuous wave (CW) operation still needs to be improved to achieve large-scale exploitation. Here, we demonstrate highly efficient operation of a subwavelength microcavity laser consisting of two evanescently coupled whispering gallery microdisk resonators. Exploiting a dual injection scheme for the laser cavity, single mode CW vertical emission at 3.3 THz is obtained at 10 K with 6.4 mA threshold current and 145 mW/A slope efficiency up to 320 µW emitted power measured in quasi-CW mode. The tuning of the laser emission directionality is also obtained by independently varying the pumping strength between the microdisks. By connecting the resonators through a suspended gold bridge, the laser out-coupling efficiency in the vertical direction is strongly enhanced. Owing to the high brightness, low-power consumption and CW operation, the proposed microcavity laser design could allow the realization of high-performance CW THz QCLs ready for massive parallelization.

8.
Phys Rev Lett ; 126(20): 207701, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110191

RESUMO

We report on ballistic Hall photovoltammetry as a contactless probe of localized spin excitations. Spins resonating in the near field of a two-dimensional electron system are shown to induce a long range electromotive force that we calculate. We use this coupling mechanism to detect the spin wave eigenmodes of a single ferromagnet of sub-100 nm size. The high sensitivity of this detection technique, 380 spins/sqrt[Hz], and its noninvasiveness present advantages for probing magnetization dynamics and spin transport.

9.
ACS Nano ; 14(11): 15293-15305, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33104341

RESUMO

We present multiplexer methodology and hardware for nanoelectronic device characterization. This high-throughput and scalable approach to testing large arrays of nanodevices operates from room temperature to milli-Kelvin temperatures and is universally compatible with different materials and integration techniques. We demonstrate the applicability of our approach on two archetypal nanomaterials-graphene and semiconductor nanowires-integrated with a GaAs-based multiplexer using wet or dry transfer methods. A graphene film grown by chemical vapor deposition is transferred and patterned into an array of individual devices, achieving 94% yield. Device performance is evaluated using data fitting methods to obtain electrical transport metrics, showing mobilities comparable to nonmultiplexed devices fabricated on oxide substrates using wet transfer techniques. Separate arrays of indium-arsenide nanowires and micromechanically exfoliated monolayer graphene flakes are transferred using pick-and-place techniques. For the nanowire array mean values for mobility µFE = 880/3180 cm2 V-1 s-1 (lower/upper bound), subthreshold swing 430 mV dec-1, and on/off ratio 3.1 decades are extracted, similar to nonmultiplexed devices. In another array, eight mechanically exfoliated graphene flakes are transferred using techniques compatible with fabrication of two-dimensional superlattices, with 75% yield. Our results are a proof-of-concept demonstration of a versatile platform for scalable fabrication and cryogenic characterization of nanomaterial device arrays, which is compatible with a broad range of nanomaterials, transfer techniques, and device integration strategies from the forefront of quantum technology research.

10.
Sci Adv ; 6(15): eaaz4948, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300658

RESUMO

Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.

11.
Light Sci Appl ; 8: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044073

RESUMO

Random lasers are a class of devices in which feedback arises from multiple elastic scattering in a highly disordered structure, providing an almost ideal light source for artefact-free imaging due to achievable low spatial coherence. However, for many applications ranging from sensing and spectroscopy to speckle-free imaging, it is essential to have high-radiance sources operating in continuous-wave (CW). In this paper, we demonstrate CW operation of a random laser using an electrically pumped quantum-cascade laser gain medium in which a bi-dimensional (2D) random distribution of air holes is patterned into the top metal waveguide. We obtain a highly collimated vertical emission at ~3 THz, with a 430 GHz bandwidth, device operation up to 110 K, peak (pulsed) power of 21 mW, and CW emission of 1.7 mW. Furthermore, we show that an external cavity formed with a movable mirror can be used to tune a random laser, obtaining continuous frequency tuning over 11 GHz.

12.
Sci Rep ; 8(1): 17024, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451885

RESUMO

Ferromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrxSb2-xTe3 thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI]. Upon increasing the Cr concentration from x = 0.15 to 0.76, the Curie temperature (Tc) was observed to increase by ~5 times to 176 K. In addition, it was possible to modify the magnetic moment by up to 50% with a gate bias variation of just ±3 V, which corresponds to an increase in carrier density by 50%. Further analysis on a sample with x = 0.76 exhibits a clear insulator-metal transition at Tc, indicating the consistency between the electrical and optical measurements. The direct correlation obtained between the carrier density and ferromagnetism - in both electrostatic and chemical doping - using optical and electrical means strongly suggests a carrier-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling scenario. Our low-voltage means of manipulating ferromagnetism, and consistency in optical and electrical measurements provides a way to realize exotic quantum states for spintronic and low energy magneto-electronic device applications.

13.
Nat Commun ; 9(1): 1122, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549267

RESUMO

Terahertz (THz) quantum cascade lasers (QCLs) have undergone rapid development since their demonstration, showing high power, broad-tunability, quantum-limited linewidth, and ultra-broadband gain. Typically, to address applications needs, continuous-wave (CW) operation, low-divergent beam profiles and fine spectral control of the emitted radiation, are required. This, however, is very difficult to achieve in practice. Lithographic patterning has been extensively used to this purpose (via distributed feedback (DFB), photonic crystals or microcavities), to optimize either the beam divergence or the emission frequency, or, both of them simultaneously, in third-order DFBs, via a demanding fabrication procedure that precisely constrains the mode index to 3. Here, we demonstrate wire DFB THz QCLs, in which feedback is provided by a sinusoidal corrugation of the cavity, defining the frequency, while light extraction is ensured by an array of surface holes. This new architecture, extendable to a broad range of far-infrared frequencies, has led to the achievement of low-divergent beams (10°), single-mode emission, high slope efficiencies (250 mW/A), and stable CW operation.

14.
Opt Express ; 25(21): 25566-25573, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041222

RESUMO

Terahertz (THz) coherent detectors are crucial for the stabilization and measurement of the properties of quantum cascade lasers (QCLs). This paper describes the exploitation of intra-cavity sum frequency generation to up-convert the emission of a THz QCL to the near infrared for detection with fiber optic coupled components alone. Specifically, a low cost infrared photodiode is used to detect a radio frequency (RF) signal with a signal-to-noise ratio of approximately 20dB, generated by beating the up-converted THz wave and a near infrared local oscillator. This RF beat note allows direct analysis of the THz QCL emission in time and frequency domains. The application of this technique for QCL characterization is demonstrated by analyzing the continuous tuning of the RF signal over 2 GHz, which arises from mode tuning across the QCL's operational current range.

15.
Sci Rep ; 7(1): 10625, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878213

RESUMO

We demonstrate how terahertz time-domain spectroscopy (THz-TDS) operating in reflection geometry can be used for quantitative conductivity mapping of large area chemical vapour deposited graphene films on sapphire, silicon dioxide/silicon and germanium. We validate the technique against measurements performed with previously established conventional transmission based THz-TDS and are able to resolve conductivity changes in response to induced back-gate voltages. Compared to the transmission geometry, measurement in reflection mode requires careful alignment and complex analysis, but circumvents the need of a terahertz transparent substrate, potentially enabling fast, contactless, in-line characterisation of graphene films on non-insulating substrates such as germanium.

16.
Adv Mater ; 29(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28066989

RESUMO

Low-bandgap CH3 NH3 (Pbx Sn1-x )I3 (0 ≤ x ≤ 1) hybrid perovskites (e.g., ≈1.5-1.1 eV) demonstrating high surface coverage and superior optoelectronic properties are fabricated. State-of-the-art photovoltaic (PV) performance is reported with power conversion efficiencies approaching 10% in planar heterojunction architecture with small (<450 meV) energy loss compared to the bandgap and high (>100 cm2 V-1 s-1 ) intrinsic carrier mobilities.

17.
Light Sci Appl ; 6(10): e17054, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167200

RESUMO

Resonators and the way they couple to external radiation rely on very different concepts if one considers devices belonging to the photonic and electronic worlds. The terahertz frequency range, however, provides intriguing possibilities for the development of hybrid technologies that merge ideas from both fields in novel functional designs. In this paper, we show that high-quality, subwavelength, whispering-gallery lasers can be combined to form a linear dipole antenna, which creates a very efficient, low-threshold laser emission in a collimated beam pattern. For this purpose, we employ a terahertz quantum-cascade active region patterned into two 19-µm-radius microdisks coupled by a suspended metallic bridge, which simultaneously acts as an inductive antenna and produces the dipole symmetry of the lasing mode. Continuous-wave vertical emission is demonstrated at approximately 3.5 THz in a very regular, low-divergence (±10°) beam, with a high slope efficiency of at least 160 mW A-1 and a mere 6 mA of threshold current, which is ensured by the ultra-small resonator size (VRES/λ3≈10-2). The extremely low power consumption and the superior beam brightness make this concept very promising for the development of miniaturized and portable THz sources to be used in the field for imaging and sensing applications as well as for exploring novel optomechanical intracavity effects.

18.
Sci Rep ; 6: 29845, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432047

RESUMO

The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.

19.
Phys Rev Lett ; 116(16): 163604, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152804

RESUMO

We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a fivefold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.

20.
Sensors (Basel) ; 16(4): 439, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27023552

RESUMO

We report on a quartz-enhanced photoacoustic (QEPAS) sensor for methanol (CH3OH) detection employing a novel quartz tuning fork (QTF), specifically designed to enhance the QEPAS sensing performance in the terahertz (THz) spectral range. A discussion of the QTF properties in terms of resonance frequency, quality factor and acousto-electric transduction efficiency as a function of prong sizes and spacing between the QTF prongs is presented. The QTF was employed in a QEPAS sensor system using a 3.93 THz quantum cascade laser as the excitation source in resonance with a CH3OH rotational absorption line located at 131.054 cm(-1). A minimum detection limit of 160 ppb in 30 s integration time, corresponding to a normalized noise equivalent absorption NNEA = 3.75 × 10(-11) cm(-1)W/Hz(½), was achieved, representing a nearly one-order-of-magnitude improvement with respect to previous reports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA