Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Transl Med ; 15(701): eade3901, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37343082

RESUMO

Adenoviral-vectored vaccines are licensed for prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus, but, for bacterial proteins, expression in a eukaryotic cell may affect the antigen's localization and conformation or lead to unwanted glycosylation. Here, we investigated the potential use of an adenoviral-vectored vaccine platform for capsular group B meningococcus (MenB). Vector-based candidate vaccines expressing MenB antigen factor H binding protein (fHbp) were generated, and immunogenicity was assessed in mouse models, including the functional antibody response by serum bactericidal assay (SBA) using human complement. All adenovirus-based vaccine candidates induced high antigen-specific antibody and T cell responses. A single dose induced functional serum bactericidal responses with titers superior or equal to those induced by two doses of protein-based comparators, as well as longer persistence and a similar breadth. The fHbp transgene was further optimized for human use by incorporating a mutation abrogating binding to the human complement inhibitor factor H. The resulting vaccine candidate induced high and persistent SBA responses in transgenic mice expressing human factor H. The optimized transgene was inserted into the clinically relevant ChAdOx1 backbone, and this vaccine has now progressed to clinical development. The results of this preclinical vaccine development study underline the potential of vaccines based on genetic material to induce functional antibody responses against bacterial outer membrane proteins.


Assuntos
COVID-19 , Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Vacinas Virais , Humanos , Camundongos , Animais , Fator H do Complemento , SARS-CoV-2 , Antígenos de Bactérias , Proteínas de Bactérias/genética , Infecções Meningocócicas/prevenção & controle , Proteínas de Transporte , Camundongos Transgênicos , Adenoviridae/genética , Anticorpos Antibacterianos
2.
PLoS Pathog ; 17(6): e1009655, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34125873

RESUMO

Microbial pathogens bind host complement regulatory proteins to evade the immune system. The bacterial pathogen Neisseria meningitidis, or meningococcus, binds several complement regulators, including human Factor H (FH). FH binding protein (FHbp) is a component of two licensed meningococcal vaccines and in mice FHbp elicits antibodies that inhibit binding of FH to FHbp, which defeat the bacterial evasion mechanism. However, humans vaccinated with FHbp develop antibodies that enhance binding of FH to the bacteria, which could limit the effectiveness of the vaccines. In the present study, we show that two vaccine-elicited antibody fragments (Fabs) isolated from different human subjects increase binding of complement FH to meningococcal FHbp by ELISA. The two Fabs have different effects on the kinetics of FH binding to immobilized FHbp as measured by surface plasmon resonance. The 1.7- and 2.0-Å resolution X-ray crystal structures of the Fabs in complexes with FHbp illustrate that the two Fabs bind to similar epitopes on the amino-terminal domain of FHbp, adjacent to the FH binding site. Superposition models of ternary complexes of each Fab with FHbp and FH show that there is likely minimal contact between the Fabs and FH. Collectively, the structures reveal that the Fabs enhance binding of FH to FHbp by altering the conformations and mobilities of two loops adjacent to the FH binding site of FHbp. In addition, the 1.5 Å-resolution structure of one of the isolated Fabs defines the structural rearrangements associated with binding to FHbp. The FH-enhancing human Fabs, which are mirrored in the human polyclonal antibody responses, have important implications for tuning the effectiveness of FHbp-based vaccines.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Vacinas Meningocócicas/imunologia , Anticorpos Antibacterianos/metabolismo , Fator H do Complemento/metabolismo , Humanos , Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo , Fatores de Virulência/imunologia
3.
Vaccine ; 38(49): 7716-7727, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32878710

RESUMO

Neisseria meningitidis, the causative agent of invasive meningococcal disease (IMD), is classified into different serogroups defined by their polysaccharide capsules. Meningococcal serogroups A, B, C, W, and Y are responsible for most IMD cases, with serogroup B (MenB) causing a substantial percentage of IMD cases in many regions. Vaccines using capsular polysaccharides conjugated to carrier proteins have been successfully developed for serogroups A, C, W, and Y. However, because the MenB capsular polysaccharide is poorly immunogenic, MenB vaccine development has focused on alternative antigens. The 2 currently available MenB vaccines (MenB-4C and MenB-FHbp) both include factor H binding protein (FHbp), a surface-exposed protein harboured by nearly all meningococcal isolates that is important for survival of the bacteria in human blood. MenB-4C contains a nonlipidated FHbp from subfamily B in addition to other antigens, including Neisserial Heparin Binding Antigen, Neisserial adhesin A, and outer membrane vesicles, whereas MenB-FHbp contains a lipidated FHbp from each subfamily (A and B). FHbp is highly immunogenic and a main target of bactericidal activity of antibodies elicited by both licensed MenB vaccines. FHbp is also an important vaccine component, in contrast to some other meningococcal antigens that may have limited cross-protection across strains, as FHbp-specific antibodies can provide broad cross-protection within each subfamily. Limited cross-protection between subfamilies necessitates the inclusion of FHbp variants from both subfamilies to achieve broad FHbp-based vaccine coverage. Additionally, immune responses to the lipidated form of FHbp have a superior cross-reactive profile to those elicited by the nonlipidated form. Taken together, the inclusion of lipidated FHbp variants from both FHbp subfamilies is expected to provide broad protection against the diverse disease-causing meningococcal strains expressing a wide range of FHbp sequence variants. This review describes the development of vaccines for MenB disease prevention, with a focus on the FHbp antigen.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Antígenos de Bactérias , Proteínas de Bactérias/genética , Proteínas de Transporte , Fator H do Complemento , Humanos , Infecções Meningocócicas/prevenção & controle
4.
Hum Vaccin Immunother ; 16(3): 703-712, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31526219

RESUMO

Bacteria produce surface ligands for host complement regulators including Factor H (FH), which allows the bacteria to evade immunity. Meningococcal Factor H binding protein (FHbp) is both a virulence factor and a vaccine antigen. Antibodies to FHbp can neutralize its function by inhibiting binding of FH to the bacteria and confer robust complement-mediated protection. However, in the presence of human or primate FH, antibodies to FHbp do not inhibit FH binding and the protective antibody responses are decreased. This immune suppression can be overcome by modification of the FHbp antigen to decrease FH binding, which modulates the antibody repertoire to inhibit FH binding and increase protection. When FHbp is present at sufficient density on the bacterial surface, two or more antibodies can synergize to activate the complement system. Thus, modification of FHbp antigens to decrease FH binding expands the anti-FHbp antibody repertoire and increases the potential for synergistic activity.


Assuntos
Anticorpos Antibacterianos , Fator H do Complemento , Vacinas Meningocócicas , Neisseria meningitidis , Animais , Antígenos de Bactérias , Proteínas de Bactérias/metabolismo , Atividade Bactericida do Sangue , Proteínas de Transporte , Fator H do Complemento/metabolismo , Humanos
5.
mSphere ; 4(4)2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270173

RESUMO

Meningococcal serogroup B (MenB) vaccines contain recombinant factor H binding protein (FHbp), which can complex with complement factor H (CFH) and thereby risk eliciting anti-FH autoantibodies. While anti-FH antibodies can be present in sera of healthy persons, the antibodies are implicated in autoimmune atypical hemolytic uremic syndrome and C3 glomerulopathies. We immunized 120 students with a MenB vaccine (Bexsero). By enzyme-linked immunosorbent assay (ELISA), there were small increases in serum anti-FH levels at 3 weeks postvaccination (geometric mean optical density at 405 nm [OD405], 0.54 versus 0.51 preimmunization, P ≤ 0.003 for each schedule tested). There was a similar small increase in anti-FH antibody levels in a second historical MenB study of 20 adults with stored paired preimmunization and postimmunization sera (P = 0.007) but not in three other studies of 57 adults immunized with other meningococcal vaccines that did not contain recombinant FHbp (P = 0.17, 0.84, and 0.60, respectively). Thus, humans vaccinated with MenB-4C develop small increases in serum anti-FH antibody reactivity. Although not likely to be clinically important, the data indicate a host response to FH. In the prospective MenB study, three subjects (2.5%) developed higher anti-FH titers postimmunization. The elevated titers returned to baseline within 3 to 4 months, and none of the subjects reported adverse events during the follow-up. Although anti-FH antibodies can decrease FH function, the postimmunization sera with high anti-FH antibody levels did not impair serum FH function as measured using a hemolytic assay. Thus, while additional studies are warranted, there is no evidence that the anti-FH antibodies elicited by MenB-4C are likely to cause anti-FH-mediated autoimmune disorders. (This study has been registered at ClinicalTrials.gov under registration no. NCT02583412.)IMPORTANCE Meningococci are bacteria that cause sepsis and meningitis. Meningococcal species are subdivided into serogroups on the basis of different sugar capsules. Vaccines that target serogroup A, C, Y, and W capsules are safe and highly effective. New serogroup B (MenB) vaccines target a bacterial protein that can bind to a blood protein called complement factor H (FH). While serogroup B vaccines appear to be safe and effective, there is a theoretical risk that immunization with a bacterial protein that binds host FH might elicit anti-FH autoantibodies. Autoantibodies to FH have been detected in healthy persons but in rare cases can cause certain autoimmune diseases. We found small and/or transient increases in serum antibody to FH after MenB immunization. While no serious adverse events were reported in the subjects with elevated anti-FH titers, since onset of autoimmune disease is a rare event and may occur months or years after vaccination, additional, larger studies are warranted.


Assuntos
Antígenos de Bactérias/imunologia , Autoanticorpos/sangue , Proteínas de Bactérias/imunologia , Vacinas Meningocócicas/imunologia , Adolescente , Adulto , Atividade Bactericida do Sangue , Fator H do Complemento/imunologia , Humanos , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis Sorogrupo B/imunologia , Estudos Prospectivos , Sorogrupo , Adulto Jovem
6.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213564

RESUMO

MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies.IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Vacinas Meningocócicas/imunologia , Animais , Antígenos de Bactérias/genética , Autoanticorpos/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Macaca mulatta , Meningite Meningocócica/imunologia , Meningite Meningocócica/prevenção & controle , Proteínas Mutantes/imunologia , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/imunologia , Ensaios de Anticorpos Bactericidas Séricos
7.
J Infect Dis ; 219(7): 1130-1137, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30346576

RESUMO

BACKGROUND: Meningococcal outer membrane vesicle (OMV) vaccines are prepared with detergents to remove endotoxin, which also remove desirable antigens such as factor H binding protein (FHbp). Native OMV (NOMV) vaccines with genetically attenuated endotoxin do not require detergent treatment and elicit broader serum bactericidal antibody (SBA) responses than OMV or recombinant FHbp (rFHbp) vaccines. METHODS: We measured human complement-mediated SBA responses in mice immunized with NOMV with overexpressed FHbp subfamily B (NOMV-FHbp), NOMV with FHbp genetically inactivated (NOMV-KO), and/or a control rFHbp vaccine against meningococcal and gonococcal strains. RESULTS: Despite having 36-fold less FHbp per dose, the NOMV-FHbp vaccine elicited a ≥3-fold higher serum IgG anti-FHbp geometric mean titer than control vaccines containing rFHbp (P ≤ .003). Against 2 meningococcal outbreak strains with mismatched PorA and heterologous FHbp subfamily B sequence variants, the NOMV-FHbp vaccine produced ≥30-fold higher SBA titers than control vaccines. Mice immunized with NOMV-FHbp and NOMV-KO vaccines also elicited SBA against a gonococcal strain (P < .0001 vs the adjuvant-only control group). In contrast, 2 licensed meningococcal serogroup B vaccines, including one containing detergent-extracted OMV, did not produce gonococcal SBA in humans. CONCLUSIONS: A meningococcal NOMV vaccine elicits SBA against gonococci and with overexpressed FHbp elicits SBA against meningococci.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Vacinas Meningocócicas/imunologia , Neisseria gonorrhoeae/imunologia , Neisseria meningitidis/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Imunoglobulina G/sangue , Camundongos , Vacinas Atenuadas/imunologia
8.
Nat Commun ; 9(1): 528, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410413

RESUMO

Data obtained recently in the United Kingdom following a nationwide infant immunization program against serogroup B Neisseria meningitidis (MenB) reported >80% 4CMenB vaccine-mediated protection. Factor H-binding protein (fHbp) is a meningococcal virulence factor and a component of two new MenB vaccines. Here, we investigated the structural bases underlying the fHbp-dependent protective antibody response in humans, which might inform future antigen design efforts. We present the co-crystal structure of a human antibody Fab targeting fHbp. The vaccine-elicited Fab 1A12 is cross-reactive and targets an epitope highly conserved across the repertoire of three naturally occurring fHbp variants. The free Fab structure highlights conformational rearrangements occurring upon antigen binding. Importantly, 1A12 is bactericidal against MenB strains expressing fHbp from all three variants. Our results reveal important immunological features potentially contributing to the broad protection conferred by fHbp vaccination. Our studies fuel the rationale of presenting conserved protein epitopes when developing broadly protective vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Sequência Conservada , Epitopos/imunologia , Vacinas Meningocócicas/química , Adulto , Sequência de Aminoácidos , Afinidade de Anticorpos , Reações Cruzadas , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/química , Humanos , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Conformação Proteica
9.
Protein Sci ; 26(11): 2221-2228, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833948

RESUMO

A classical model for allosteric regulation of enzyme activity posits an equilibrium between inactive and active conformations. An alternative view is that allosteric activation is achieved by increasing the potential for conformational changes that are essential for catalysis. In the present study, substitution of a basic residue in the active site of the catalytic (C) trimer of aspartate transcarbamoylase with a non-polar residue results in large interdomain hinge changes in the three chains of the trimer. One conformation is more open than the chains in both the wild-type C trimer and the catalytic chains in the holoenzyme, the second is closed similar to the bisubstrate-analog bound conformation and the third hinge angle is intermediate to the other two. The active-site 240s loop conformation is very different between the most open and closed chains, and is disordered in the third chain, as in the holoenzyme. We hypothesize that binding of anionic substrates may promote similar structural changes. Further, the ability of the three catalytic chains in the trimer to access the open and closed active-site conformations simultaneously suggests a cyclic catalytic mechanism, in which at least one of the chains is in an open conformation suitable for substrate binding whereas another chain is closed for catalytic turnover. Based on the many conformations observed for the chains in the isolated catalytic trimer to date, we propose that allosteric activation of the holoenzyme occurs by release of quaternary constraint into an ensemble of active-site conformations.


Assuntos
Substituição de Aminoácidos , Aspartato Carbamoiltransferase/química , Ácido Aspártico/química , Regulação Alostérica , Motivos de Aminoácidos , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/metabolismo , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
10.
Biochem J ; 473(24): 4699-4713, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27784765

RESUMO

Factor H-binding protein (fHbp) is an important antigen of Neisseria meningitidis that is capable of eliciting a robust protective immune response in humans. Previous studies on the interactions of fHbp with antibodies revealed that some anti-fHbp monoclonal antibodies that are unable to trigger complement-mediated bacterial killing in vitro are highly co-operative and become bactericidal if used in combination. Several factors have been shown to influence such co-operativity, including IgG subclass and antigen density. To investigate the structural basis of the anti-fHbp antibody synergy, we determined the crystal structure of the complex between fHbp and the Fab (fragment antigen-binding) fragment of JAR5, a specific anti-fHbp murine monoclonal antibody known to be highly co-operative with other monoclonal antibodies. We show that JAR5 is highly synergic with monoclonal antibody (mAb) 12C1, whose structure in complex with fHbp has been previously solved. Structural analyses of the epitopes recognized by JAR5 and 12C1, and computational modeling of full-length IgG mAbs of JAR5 and 12C1 bound to the same fHbp molecule, provide insights into the spatial orientation of Fc (fragment crystallizable) regions and into the possible implications for the susceptibility of meningococci to complement-mediated killing.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Neisseria meningitidis/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
11.
JCI Insight ; 1(14): e88907, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27668287

RESUMO

Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens.

12.
Infect Immun ; 84(6): 1735-1742, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27021245

RESUMO

Neisseria meningitidis causes cases of bacterial meningitis and sepsis. Factor H binding protein (FHbp) is a component of two licensed meningococcal serogroup B vaccines. FHbp recruits the complement regulator factor H (FH) to the bacterial surface, which inhibits the complement alternative pathway and promotes immune evasion. Binding of human FH impairs the protective antibody responses to FHbp, and mutation of FHbp to decrease binding of FH can increase the protective responses. In a previous study, we identified two amino acid substitutions in FHbp variant group 2 that increased its thermal stability by 21°C and stabilized epitopes recognized by protective monoclonal antibodies (MAbs). Our hypothesis was that combining substitutions to increase stability and decrease FH binding would increase protective antibody responses in the presence of human FH. In the present study, we generated four new FHbp single mutants that decreased FH binding and retained binding of anti-FHbp MAbs and immunogenicity in wild-type mice. From these mutants, we selected two, K219N and G220S, to combine with the stabilized double-mutant FHbp antigen. The two triple mutants decreased FH binding >200-fold, increased the thermal stability of the N-terminal domain by 21°C, and bound better to an anti-FHbp MAb than the wild-type FHbp. In human-FH-transgenic mice, the FHbp triple mutants elicited 8- to 15-fold-higher protective antibody responses than the wild-type FHbp antigen. Collectively, the data suggest that mutations to eliminate binding of human FH and to promote conformational stability act synergistically to optimize FHbp immunogenicity.


Assuntos
Anticorpos Antibacterianos/biossíntese , Anticorpos Monoclonais/biossíntese , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Imunogenicidade da Vacina , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/biossíntese , Neisseria meningitidis/patogenicidade , Substituição de Aminoácidos , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Clonagem Molecular , Fator H do Complemento/química , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Evasão da Resposta Imune , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/genética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Mutação , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sorogrupo
13.
Proc Natl Acad Sci U S A ; 112(48): 14823-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627237

RESUMO

Factor H binding protein (FHbp) is part of two vaccines recently licensed for prevention of sepsis and meningitis caused by serogroup B meningococci. FHbp is classified in three phylogenic variant groups that have limited antigenic cross-reactivity, and FHbp variants in one of the groups have low thermal stability. In the present study, we replaced two amino acid residues, R130 and D133, in a stable FHbp variant with their counterparts (L and G) from a less stable variant. The single and double mutants decreased thermal stability of the amino- (N-) terminal domain compared with the wild-type protein as measured by scanning calorimetry. We introduced the converse substitutions, L130R and G133D, in a less stable wild-type FHbp variant, which increased the transition midpoint (Tm) for the N-terminal domain by 8 and 12 °C; together the substitutions increased the Tm by 21 °C. We determined the crystal structure of the double mutant FHbp to 1.6 Å resolution, which showed that R130 and D133 mediated multiple electrostatic interactions. Monoclonal antibodies specific for FHbp epitopes in the N-terminal domain had higher binding affinity for the recombinant double mutant by surface plasmon resonance and to the mutant expressed on meningococci by flow cytometry. The double mutant also had decreased binding of human complement Factor H, which in previous studies increased the protective antibody responses. The stabilized mutant FHbp thus has the potential to stabilize protective epitopes and increase the protective antibody responses to recombinant FHbp vaccines or native outer membrane vesicle vaccines with overexpressed FHbp.


Assuntos
Substituição de Aminoácidos , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Vacinas Meningocócicas/química , Neisseria meningitidis Sorogrupo B , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Temperatura Alta , Humanos , Vacinas Meningocócicas/genética , Estabilidade Proteica
14.
Vaccine ; 33(51): 7168-7175, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26562320

RESUMO

FHbp is a major serogroup B meningococcal vaccine antigen. Binding of complement Factor H (FH) to FHbp is specific for human and some non-human primate FH. In previous studies, FH binding to FHbp vaccines impaired protective anti-FHbp antibody responses. In this study we investigated anti-FHbp antibody responses to a third dose of a licensed serogroup B vaccine (MenB-4C) in infant macaques vaccinated in a previous study with MenB-4C. Six macaques with high binding of FH to FHbp (FH(high)), and six with FH(low) baseline phenotypes, were immunized three months after dose 2. After dose 2, macaques with the FH(low) baseline phenotype had serum anti-FHbp antibodies that enhanced FH binding to FHbp (functionally converting them to a FH(high) phenotype). In this group, activation of the classical complement pathway (C4b deposition) by serum anti-FHbp antibody, and anti-FHbp serum bactericidal titers were lower after dose 3 than after dose 2 (p<0.02). In macaques with the FH(high) baseline phenotype, the respective anti-FHbp C4b deposition and bactericidal titers were similar after doses 2 and 3. Two macaques developed serum anti-FH autoantibodies after dose 2, which were not detected after dose 3. In conclusion, in macaques with the FH(low) baseline phenotype whose post-dose 2 serum anti-FHbp antibodies had converted them to FH(high), the anti-FHbp antibody repertoire to dose 3 was skewed to less protective epitopes than after dose 2. Mutant FHbp vaccines that eliminate FH binding may avoid eliciting anti-FHbp antibodies that enhance FH binding, and confer greater protection with less risk of inducing anti-FH autoantibodies than FHbp vaccines that bind FH.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Atividade Bactericida do Sangue , Fator H do Complemento/metabolismo , Imunização Secundária , Vacinas Meningocócicas/imunologia , Animais , Animais Recém-Nascidos , Macaca mulatta , Vacinas Meningocócicas/administração & dosagem
15.
Clin Vaccine Immunol ; 22(12): 1227-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424832

RESUMO

In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination.


Assuntos
Atividade Bactericida do Sangue , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Universidades , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Adulto , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Humanos , Macaca mulatta , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Camundongos , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/isolamento & purificação , Estados Unidos/epidemiologia
16.
PLoS One ; 10(8): e0135996, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26285122

RESUMO

BACKGROUND: Two meningococcal serogroup B vaccines contain Factor H binding protein (FHbp). Binding of Factor H (FH) to FHbp was thought to be specific for human or chimpanzee FH. However, in a previous study an amino acid polymorphism in rhesus macaque FH domain 6, tyrosine at position 352 (Y352) was associated with high binding to FHbp, whereas histidine at position 352 (H352) was associated with low binding. METHODS AND RESULTS: Here we report that a second FH polymorphism at position 360 also affects macaque FH binding. Of 43 macaques, 11 had high FH binding and 32 had low binding. As in our previous study, all 11 animals with high binding had Y352, and 24 with low binding had H352. However the remaining eight with low FH binding had Y352, which was predicted to yield high binding. All eight had S360 instead of P360. Thus, three allelic variants at positions 352 and 360 affect macaque FH binding to FHbp: HP (low), YS (low), and YP (high). We measured binding affinity of each FH sequence type to FHbp by surface plasmon resonance. Two animals with high binding types (YS/YP and HP/YP) had dissociation constants (KD) of 10.4 and 18.2 nM, respectively, which were similar to human FH (19.8 nM). Two macaques with low binding (HP/HP and HP/YS) had KD values approximately five-fold higher (100.3 and 99.5 nM, respectively). A third macaque with low binding (YS/YS) had a KD value too high to be measured. CONCLUSIONS: Macaques have at least three allelic variants encoding FH with different affinities for FHbp (five genotypic combinations of these variants). Since in previous studies binding of FH to FHbp vaccines decreased protective antibody responses, our data will aid in selection of macaques with FH binding that is similar to humans for further investigation of FHbp vaccine immunogenicity.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Regulação da Expressão Gênica , Polimorfismo Genético/genética , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Macaca mulatta , Ressonância de Plasmônio de Superfície
17.
mBio ; 6(3): e00842, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26106082

RESUMO

UNLABELLED: Two licensed serogroup B meningococcal vaccines contain factor H binding protein (FHbp). The antigen specifically binds human FH, which downregulates complement. In wild-type mice whose mouse FH does not bind to FHbp vaccines, the serum anti-FHbp antibody response inhibited binding of human FH to FHbp. The inhibition was important for eliciting broad anti-FHbp serum bactericidal activity. In human FH transgenic mice and some nonhuman primates, FHbp was able to form a complex with FH and FHbp vaccination elicited anti-FHbp antibodies that did not inhibit FH binding. To investigate the human anti-FHbp repertoire, we cloned immunoglobulin heavy- and light-chain-variable-region genes of individual B cells from three adults immunized with FHbp vaccines and generated 10 sequence-distinct native anti-FHbp antibody fragments (Fabs). All 10 Fabs bound to live meningococci; only 1 slightly inhibited binding of human FH, while 4 enhanced FH binding. Affinity-purified anti-FHbp antibody from serum of a fourth immunized adult also enhanced binding of human FH to live meningococcal bacteria. Despite the bound FH, the affinity-purified serum anti-FHbp antibodies elicited human complement-mediated bactericidal activity that was amplified by the alternative pathway. The lack of FH inhibition by the human anti-FHbp Fabs and serum antibodies suggests that binding of human FH to the vaccine antigen skews the anti-FHbp antibody repertoire to epitopes outside the FH-binding site. Mutant FHbp vaccines with decreased FH binding may represent a means to redirect the human antibody repertoire to epitopes within the FH binding site, which can inhibit FH binding and, potentially, increase safety and protective activity. IMPORTANCE: Two meningococcal vaccines contain factor H binding protein (FHbp). Immunized mice whose mouse factor H (FH) does not bind to FHbp develop serum anti-FHbp antibodies that block binding of human FH to the bacteria. With less bound FH, the bacteria become more susceptible to complement killing. To investigate human responses, we isolated 10 recombinant anti-FHbp antibody fragments (Fabs) from immune cells of three immunized adults. One slightly inhibited binding of FH to the bacteria, and four enhanced FH binding. Purified serum anti-FHbp antibodies from a fourth immunized adult also enhanced FH binding. Although bound FH would be expected to block the alternative pathway, the human anti-FHbp antibodies retained bactericidal activity and the ability to activate the alternative pathway. Mutant FHbp vaccines with decreased binding to human FH may redirect the human antibody repertoire to epitopes within the FH binding site that inhibit FH binding, which are expected to increase protective activity.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Atividade Bactericida do Sangue , Imunidade Humoral , Animais , Linfócitos B/imunologia , Clonagem Molecular , Fator H do Complemento/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Ligação Proteica , Análise de Sequência de DNA
18.
PLoS One ; 10(6): e0128185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26057742

RESUMO

Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Biblioteca Gênica , Vacinas Meningocócicas/imunologia , Proteínas Mutantes/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Formação de Anticorpos/imunologia , Varredura Diferencial de Calorimetria , Fator H do Complemento/metabolismo , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Feminino , Humanos , Proteínas Imobilizadas/metabolismo , Camundongos Transgênicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Soro/metabolismo , Ressonância de Plasmônio de Superfície
19.
J Infect Dis ; 212(5): 784-92, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25676468

RESUMO

BACKGROUND: The meningococcal vaccine antigen, factor H (FH)-binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. METHODS: To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FH(high)) and, in 6 animals, bound weakly to FHbp (FHbp-FH(low)). RESULTS: There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FH(high) macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FH(low) macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. CONCLUSIONS: Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Fator H do Complemento/metabolismo , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Animais , Animais Recém-Nascidos , Atividade Bactericida do Sangue , Tolerância Imunológica , Macaca mulatta , Vacinas Meningocócicas/administração & dosagem , Camundongos Transgênicos , Ligação Proteica
20.
Clin Vaccine Immunol ; 21(11): 1505-11, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25185576

RESUMO

Neisseria meningitidis causes disease only in humans. An important mechanism underlying this host specificity is the ability of the organism to resist complement by recruiting the complement downregulator factor H (FH) to the bacterial surface. In previous studies, binding of FH to one of the major meningococcal FH ligands, factor H binding protein (FHbp), was reported to be specific for human FH. Here we report that sera from 23 of 73 rhesus macaques (32%) tested had high FH binding to FHbp. Similar to human FH, binding of macaque FH to the meningococcal cell surface inhibited the complement alternative pathway by decreasing deposition of C3b. FH contains 20 domains (or short consensus repeats), with domains 6 and 7 being responsible for binding of human FH to FHbp. DNA sequence analyses of FH domains 6 and 7 from macaques with high or low FH binding showed a polymorphism at residue 352 in domain 6, with Tyr being associated with high binding and His with low binding. A recombinant macaque FH 6,7/Fc fragment with Tyr352 showed higher binding to FHbp than the corresponding fragment with His352. In previous studies in human FH transgenic mice, binding of FH to FHbp vaccines decreased protective antibody responses, and mutant FHbp vaccines with decreased FH binding elicited serum antibodies with greater protective activity. Thus, macaques with high FH binding to FHbp represent an attractive nonhuman primate model to investigate further the effects of FH binding on the immunogenicity of FHbp vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Complemento C3b/antagonistas & inibidores , Fator H do Complemento/metabolismo , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Substituição de Aminoácidos , Animais , Fator H do Complemento/genética , Macaca mulatta , Polimorfismo Genético , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA