Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 38(7): 1128-1139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618552

RESUMO

OBJECTIVE: This interlaboratory round robin test investigated the robustness of the Chevron-Notch Beam (CNB) test method and the effect of the processing and testing variations on the fracture toughness of a dental 3Y-TZP ceramic. METHODS: The round robin test was performed precisely following the procedures recommended in ISO 24370:2005 and applied on a commercial 3Y-TZP ceramic (product information). A total of 335 test specimens with dimensions 3×4 x 45 mm³ was equally distributed among 10 participating laboratories of varying experience in fracture toughness testing. A standard operating procedure was defined with either narrow processing tolerances or alternative (wider) processing tolerances (as proposed in ISO 24370). Fracture toughness data (series 2) was analyzed using one way ANOVA followed by post hoc Tukey HSD test and 95% Confidence Intervals (CI) were computed (p < 0.05). A further, preceding round-robin (series 1) test was conducted with - more possible variations of test conditions regarding CNB notch processing and storage conditions. Those results are summarized in the supplement and discussed with the actual ISO 24370 test. RESULTS: Fracture toughness of the 3Y-TZP ceramic material, summarized over all laboratories was measured to KIc = 4.48 ± 0.11 MPam0.5 for the standard processing tolerance and KIc = 4.55 ± 0.31 MPam0.5 for the alternative tolerance. The results revealed a significant influence of cutting offset and notch geometry on KIc when using CNB method. The test medium also has a significant influence on KIc in terms of reduced fracture toughness under the influence of water. With defined testing conditions the number of valid tests and reduced standard deviation increased. In case of strictly following such standard operation procedures, KIc can be determined with high reliability. There is no difference between the involved laboratories, but significant influence of cutting offset on KIC was observed. SIGNIFICANCE: The CNB method is suitable method for determination of KIc on fine-grained ceramics such as 3Y-TZP ceramic. By using tighter tolerances for processing and testing, i.e. closely following the ISO 24370 procedure, a highly-precise evaluation of fracture toughness with low data variation is achievable. The information of the storage medium should always be reported along with the data. CNB fracture toughness testing is an alternative method compared to Single-edge V-notch beam (SEVNB), especially for fine-grained ceramics.


Assuntos
Cerâmica , Zircônio , Materiais Dentários , Teste de Materiais/métodos , Reprodutibilidade dos Testes , Propriedades de Superfície
2.
Dent Mater ; 37(2): 284-295, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358016

RESUMO

OBJECTIVE: The aim of this interlaboratory round robin test was to prove the robustness of the DIN EN ISO 6872:2019 and to identify the influence of processing and testing variations. METHODS: Each of the 12 laboratories participated (A-L) received 60 (n = 720) assigned zirconia specimens. All participants seperated the specimens from the blanks, sintered them, polished half of all specimens and performed the biaxial flexural test (DIN EN ISO 6872:2019). The surface roughness was determined by using tactile measuring device. Fractographic examination was performed under scanning-electron-microscopy (SEM). Data was analysed using Kolmogorov-Smirnov-, Kruskal-Wallis-, Mann-Whitney-U-test and two-parametric Weibull statistic (p < 0.05). RESULTS: The results for both preparation methods (as-fired and polished) showed significant differences for some participants. The values for as-fired groups ranged between 513 (I) and 659 (E) MPa. H showed higher Weibull modulus than C, E and I. Within polished groups flexural strengths values from 465 (L) to 1212 (E) MPa were observed, with a tendency to clustered groups A, I, J, L (465-689 MPa) and remaining groups (877-1212 MPa). E presented the highest and H the lowest Weibull modulus. Within A and J, no impact of the preparation method on flexural strength values was observed. Within L, as-fired specimens showed higher flexural strength than polished ones. The flexural strength increase did only associate to a certain extent with measured surface roughness. Fractography showed defect populations depending on polishing techniques, associated to the strength level, especially for polished groups. Reduced strength is related to machining defects, regardless of the surface state. SIGNIFICANCE: DIN EN ISO 6872:2019 can be seen as guidance to biaxial flexural strength testing but additional effort is necessary to ensure interlaboratory comparability. Calibrated furnaces and reliable sintering conditions are mandatory requirements together with detailed specifications on finishing or polishing procedures. Biaxial flexural testing is really a matter of understanding specimen preparation, alignment and mechanical testing by itself. DIN EN ISO 6872:2019 should further recommend reporting of mean surface roughness along with any biaxial flexural strength data. Fractography is a mandatory tool in interpretation and understanding of strength data.


Assuntos
Resistência à Flexão , Laboratórios , Cerâmica , Humanos , Teste de Materiais , Propriedades de Superfície , Zircônio
3.
J Mech Behav Biomed Mater ; 98: 40-47, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185443

RESUMO

Ceramic-on-ceramic bearings in total hip replacement have shown the potential to provide low wear solutions in hip replacement. Assessing the tribological performance of these materials is important to predict their long-term performance in patients. In this study, a methodology was devised to assess the tribological in vitro behaviour of composite ceramics under combined adverse edge loading conditions and accelerated ageing. Two commercial ceramic composites were considered, namely Alumina-Toughened Zirconia (ATZ, ceramys®) and Zirconia-Toughened Alumina (ZTA, symarec®). The bearing couples were studied using the Leeds Mark II hip joint simulator for a total of eight million cycles, the first two million under normal gait (no edge loading) and the following six million cycles with the addition of edge loading conditions driven by medial-lateral separation. The bearing couples underwent hydrothermal ageing using an accelerated protocol in autoclave every million cycles. The influence of edge loading combined with ageing was significant for ATZ bearings, resulting in a slower overall ageing kinetics over the wear stripe than on the control heads. During the autoclave ageing steps, the monoclinic fraction increased more over the wear stripe area than over the unworn area. Both results thus indicated that the monoclinic phase was removed during shocks induced by edge loading. The wear performance of the two materials were similar exhibiting relatively low wear rates and low level of microstructural damage for these clinically relevant adverse conditions.


Assuntos
Artroplastia de Quadril , Cerâmica , Óxido de Alumínio/química , Cerâmica/química , Marcha , Estresse Mecânico , Fatores de Tempo , Suporte de Carga , Zircônio/química
4.
J Biomed Mater Res B Appl Biomater ; 105(6): 1361-1368, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27062442

RESUMO

Ceramic composites have performed very well under adverse edge loading conditions when used in like-on-like configurations, where the femoral head and acetabular cup are of the same material. The aim of this study was to determine the wear of pure alumina (Al2 O3 ), alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) when used in mixed bearing combinations, under edge loading conditions due to translational mal-positioning. The head-on-cup configurations of three ceramic materials were ATZ-on-ZTA, ZTA-on-ATZ, Al2 O3 -on-ATZ, ATZ-on-Al2 O3 , Al2 O3 -on-ZTA, and ZTA-on-Al2 O3 . They were tested on the Leeds II hip simulator under microseparation conditions. The bedding in and steady state wear rates of ATZ-on-ZTA were 1.16mm3 /million cycles and 0.18mm3 /million, respectively, and for ATZ-on-Al2 O3 were 0.66 mm3 /million cycles and 0.20 mm3 /million, respectively. The wear rates of the other bearing combinations under these adverse microseparation conditions, Al2 O3 -on-ATZ, Al2 O3 -on-ZTA, ZTA-on-ATZ and ZTA-on-Al2 O3 were very low with no clear bedding in and steady state phases, and with steady state wear rates lower than 0.11 mm3 /million. The mixed material combinations tested in this study have shown slightly higher wear rates when compared to ATZ in like-on-like configuration reported previously, but superior wear resistance when compared to alumina-on-alumina bearings tested previously under the same adverse microseparation conditions. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1361-1368, 2017.


Assuntos
Artroplastia de Quadril , Cerâmica/química , Prótese de Quadril , Teste de Materiais , Humanos , Suporte de Carga
5.
J Biomed Mater Res B Appl Biomater ; 101(8): 1456-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23744622

RESUMO

Further development of ceramic materials for total hip replacement aim to increase fracture toughness and further reduce the incidence of bearing fracture. Edge loading due to translational mal positioning (microseparation) has replicated stripe wear, wear rates, and bimodal wear debris observed on retrievals. This method has replicated the fracture of early zirconia ceramic-on-ceramic bearings. This has shown the necessity of introducing microseparation conditions to the gait cycle when assessing the tribological performance of new hip replacement bearings. Two novel ceramic matrix composite materials, zirconia-toughened alumina (ZTA) and alumina-toughened zirconia (ATZ), were developed by Mathys Orthopädie GmbH. In this study, ATZ-on-ATZ and ZTA-on-ZTA bearing combinations were tested and compared with alumina-on-alumina (Al2O3-on-Al2O3) bearings under adverse microseparation and edge loading conditions using the Leeds II physiological anatomical hip joint simulator. The wear rate (±95% confidence limit) of ZTA-on-ZTA was 0.14 ± 0.10 mm(3)/million cycles and that of ATZ-on-ATZ was 0.06 ± 0.004 mm(3)/million cycles compared with a wear rate of 0.74 ± 1.73 mm(3)/million cycles for Al2O3-on-Al2O3 bearings. Stripe wear was evident on all bearing combinations; however, the stripe formed on the ATZ and ZTA femoral heads was thinner and shallower that that formed on the Al2O3 heads. Posttest phase composition measurements for both ATZ and ZTA materials showed no significant change in the monoclinic zirconia content. ATZ-on-ATZ and ZTA-on-ZTA showed superior wear resistance properties when compared with Al2O3-on-Al2O3 under adverse edge loading conditions.


Assuntos
Artroplastia de Quadril/instrumentação , Materiais Biocompatíveis/química , Cerâmica/química , Prótese de Quadril , Óxido de Alumínio/química , Animais , Bovinos , Análise de Falha de Equipamento/métodos , Articulação do Quadril/patologia , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Desenho de Prótese , Falha de Prótese , Propriedades de Superfície , Zircônio/química
6.
J Biomed Mater Res B Appl Biomater ; 95(1): 202-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20737435

RESUMO

Zirconia (Y-TZP) is used as material for components of implants and prostheses because of its high short-term strength. The mechanical long-term reliability, however, is limited for Y-TZP because of hydrothermal aging effects and a pronounced tendency for subcritical crack growth. The hypothesis of this study was that a substantial amount of alumina in a zirconia matrix can help to significantly suppress subcritical crack growth and thereby improve the mechanical long-term reliability. The Weibull parameters as well as the parameters of the subcritical crack growth were determined for Alumina, Y-TZP, and two dispersion ceramics, that is Alumina Toughened Zirconia (ATZ, 20% alumina/80% Y-TZP), and Zirconia Toughened Alumina (ZTA, 75% alumina/25% Y-TZP). The long-term failure probability as a function of service time was predicted for the four ceramics. The parameter n of the subcritical crack growth was approx. 80% higher for ATZ compared to Y-TZP. In consequence, the estimated lifetime revealed a significant better mechanical long-term reliability for ATZ. It can be concluded that tailored dispersion oxide ceramics can address the aging problem of monolithic zirconia. This makes ATZ very interesting for components of joint replacement as well as for dental prostheses and implants.


Assuntos
Óxido de Alumínio , Cerâmica/química , Ítrio , Zircônio , Cerâmica/normas , Implantes Dentários , Prótese Articular , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA