Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 50(1): 513-527, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166330

RESUMO

Tracking individual cells has allowed a new understanding of cellular behavior in human health and disease by adding a dynamic component to the already complex heterogeneity of single cells. Technically, despite countless advances, numerous experimental variables can affect data collection and interpretation and need to be considered. In this review, we discuss the main technical aspects and biological findings in the analysis of the behavior of individual cells. We discuss the most relevant contributions provided by these approaches in clinically relevant human conditions like embryo development, stem cells biology, inflammation, cancer and microbiology, along with the cellular mechanisms and molecular pathways underlying these conditions. We also discuss the key technical aspects to be considered when planning and performing experiments involving the analysis of individual cells over long periods. Despite the challenges in automatic detection, features extraction and long-term tracking that need to be tackled, the potential impact of single-cell bioimaging is enormous in understanding the pathogenesis and development of new therapies in human pathophysiology.


Assuntos
Células-Tronco , Diferenciação Celular , Humanos
2.
Cancer Res ; 82(1): 3-11, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785576

RESUMO

Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome, and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell-omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be the key to better understand cancer cell fitness in tumor biology and therapeutics.


Assuntos
Genômica/métodos , Neoplasias/genética , Humanos , Fenótipo
3.
Cancer Res ; 81(4): 1040-1051, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33355182

RESUMO

Several phenotypes that impact the capacity of cancer cells to survive and proliferate are dynamic. Here we used the number of cells in colonies as an assessment of fitness and devised a novel method called Dynamic Fitness Analysis (DynaFit) to measure the dynamics in fitness over the course of colony formation. DynaFit is based on the variance in growth rate of a population of founder cells compared with the variance in growth rate of colonies with different sizes. DynaFit revealed that cell fitness in cancer cell lines, primary cancer cells, and fibroblasts under unhindered growth conditions is dynamic. Key cellular mechanisms such as ERK signaling and cell-cycle synchronization differed significantly among cells in colonies after 2 to 4 generations and became indistinguishable from randomly sampled cells regarding these features. In the presence of cytotoxic agents, colonies reduced their variance in growth rate when compared with their founder cell, indicating a dynamic nature in the capacity to survive and proliferate in the presence of a drug. This finding was supported by measurable differences in DNA damage and induction of senescence among cells of colonies. The presence of epigenetic modulators during the formation of colonies stabilized their fitness for at least four generations. Collectively, these results support the understanding that cancer cell fitness is dynamic and its modulation is a fundamental aspect to be considered in comprehending cancer cell biology and its response to therapeutic interventions. SIGNIFICANCE: Cancer cell fitness is dynamic over the course of the formation of colonies. This dynamic behavior is mediated by asymmetric mitosis, ERK activity, cell-cycle duration, and DNA repair capacity in the absence or presence of a drug.


Assuntos
Proliferação de Células/fisiologia , Aptidão Genética/fisiologia , Neoplasias/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Clonais/patologia , Células Clonais/fisiologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Aptidão Genética/efeitos dos fármacos , Humanos , Células MCF-7 , Mitose/efeitos dos fármacos , Mitose/fisiologia , Temozolomida/farmacologia , Ensaio Tumoral de Célula-Tronco
4.
Pharmacol Rep ; 69(1): 156-161, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27923159

RESUMO

BACKGROUND: A variety of chalcones have demonstrated cytotoxic activity toward several cancer cell lines. This study aimed to investigate the cytotoxicity of four chalcones derivatives of 2-acetylthiophene in human breast cancer cell lines. METHODS: MCF-7 and MDA-MB-231 cells were treated with synthesized chalcones and the cytotoxicity was evaluated by tetrazolium dye (MTT), live/dead, and DAPI assays. RESULTS: Chalcones significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner. After 48h treatment, the IC50 values ranging from 5.52 to 34.23µM. Chalcone 3c displayed the highest cytotoxic activity from all the tested compounds. Cytotoxic effects of compounds were confirmed in the live/dead assay. In addition, DAPI staining revealed that these compounds induce death by apoptosis. CONCLUSION: The data speculate that chalcone derivatives of 2-acetylthiophene may represent a source of therapeutic agents for human breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama , Chalcona/farmacologia , Tiofenos/farmacologia , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Chalcona/química , Chalcona/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Inibidores do Crescimento/farmacologia , Humanos , Células MCF-7 , Tiofenos/química , Tiofenos/uso terapêutico
5.
Front Genet ; 7: 28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973698

RESUMO

There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

6.
Int J Nanomedicine ; 9: 1583-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24741306

RESUMO

Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Lipídeos/química , Metotrexato/administração & dosagem , Nanocápsulas/química , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Esterificação , Humanos , Metotrexato/química , Nanocápsulas/administração & dosagem , Soluções , Resultado do Tratamento , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA