Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Atheroscler Rep ; 25(12): 1093-1099, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051472

RESUMO

PURPOSE OF REVIEW: High-density lipoproteins (HDL) have long been regarded as an antiatherogenic lipoprotein species by virtue of their role in reverse cholesterol transport (RCT), as well as their established anti-inflammatory and antioxidant properties. For decades, HDL have been an extremely appealing therapeutic target to combat atherosclerotic cardiovascular diseases (ASCVD). RECENT FINDINGS: Unfortunately, neither increasing HDL with drugs nor direct infusions of reconstituted HDL have convincedly proven to be positive strategies for cardiovascular health, raising the question of whether we should abandon the idea of considering HDL as a treatment target. The results of two large clinical trials, one testing the latest CETP inhibitor Obicetrapib and the other testing the infusion of patients post-acute coronary events with reconstituted HDL, are still awaited. If they prove negative, these trials will seal the fate of HDL as a direct therapeutic target. However, using HDL as a therapeutic agent still holds promise if we manage to optimize their beneficial properties for not only ASCVD but also outside the cardiovascular field.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Lipoproteínas HDL , HDL-Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Transporte Biológico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico
2.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902035

RESUMO

SARS-CoV-2 infection goes beyond acute pneumonia, as it also impacts lipid metabolism. Decreased HDL-C and LDL-C levels have been reported in patients with COVID-19. The lipid profile is a less robust biochemical marker than apolipoproteins, components of lipoproteins. However, the association of apolipoprotein levels during COVID-19 is not well described and understood. The objective of our study is to measure plasma levels of 14 apolipoproteins in patients with COVID-19 and to evaluate the relationships between apolipoprotein levels, severity factors and patient outcomes. From November to March 2021, 44 patients were recruited on admission to the intensive care unit because of COVID-19. Fourteen apolipoproteins and LCAT were measured by LC-MS/MS in plasma of 44 COVID-19 patients on admission to the ICU and 44 healthy control subjects. Absolute apolipoprotein concentrations were compared between COVID-19 patients and controls. Plasma apolipoproteins (Apo) A (I, II, IV), C(I, II), D, H, J and M and LCAT were lower in COVID-19 patients, whereas Apo E was higher. COVID-19 severity factors such as PaO2/FiO2 ratio, SO-FA score and CRP were correlated with certain apolipoproteins. Lower Apo B100 and LCAT levels were observed in non-survivors of COVID-19 versus survivors. To conclude, in this study, lipid and apolipoprotein profiles are altered in COVID-19 patients. Low Apo B100 and LCAT levels may be predictive of non-survival in COVID-19 patients.


Assuntos
COVID-19 , Colesterol , Humanos , Estudos de Coortes , Cromatografia Líquida , Colesterol/metabolismo , SARS-CoV-2/metabolismo , Espectrometria de Massas em Tandem , Apolipoproteínas , Apolipoproteínas A , Apolipoproteína B-100 , Unidades de Terapia Intensiva , Apolipoproteína A-I , Apolipoproteínas B , Apolipoproteína A-II
3.
Viruses ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851578

RESUMO

Extracellular vesicles (EVs), produced during viral infections, are of emerging interest in understanding infectious processes and host-pathogen interactions. EVs and exosomes in particular have the natural ability to transport nucleic acids, proteins, and other components of cellular or viral origin. Thus, they participate in intercellular communication, immune responses, and infectious and pathophysiological processes. Some viruses are known to hijack the cell production and content of EVs for their benefit. Here, we investigate whether two pathogenic flaviviruses i.e., Zika Virus (ZIKV) and Dengue virus (DENV2) could have an impact on the features of EVs. The analysis of EVs produced by infected cells allowed us to identify that the non-structural protein 1 (NS1), described as a viral toxin, is associated with exosomes. This observation could be confirmed under conditions of overexpression of recombinant NS1 from each flavivirus. Using different isolation methods (i.e., exosome isolation kit, size exclusion chromatography, Polyethylene Glycol enrichment, and ELISA capture), we showed that NS1 was present as a dimer at the surface of excreted exosomes, and that this association could occur in the extracellular compartment. This finding could be of major importance in a physiological context. Indeed, this capacity of NS1 to address EVs and its implication in the pathophysiology during Dengue or Zika diseases should be explored. Furthermore, exosomes that have demonstrated a natural capacity to vectorize NS1 could serve as useful tools for vaccine development.


Assuntos
Vírus da Dengue , Exossomos , Vesículas Extracelulares , Infecção por Zika virus , Zika virus , Humanos , Proteínas não Estruturais Virais/metabolismo
4.
Biomedicines ; 10(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453504

RESUMO

High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients.

5.
Vaccines (Basel) ; 9(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808706

RESUMO

The neurological complications of infection by the mosquito-borne Zika virus (ZIKV) include Guillain-Barré syndrome (GBS), an acute inflammatory demyelinating polyneuritis. GBS was first associated with recent ZIKV epidemics caused by the emergence of the ZIKV Asian lineage in South Pacific. Here, we hypothesize that ZIKV-associated GBS relates to a molecular mimicry between viral envelope E (E) protein and neural proteins involved in GBS. The analysis of the ZIKV epidemic strains showed that the glycan loop (GL) region of the E protein includes an IVNDT motif which is conserved in voltage-dependent L-type calcium channel subunit alpha-1C (Cav1.2) and Heat Shock 70 kDa protein 12A (HSP70 12A). Both VSCC-alpha 1C and HSP70 12A belong to protein families which have been associated with neurological autoimmune diseases in central nervous system. The purpose of our in silico analysis is to point out that IVNDT motif of ZIKV E-GL region should be taken in consideration for the development of safe and effective anti-Zika vaccines by precluding the possibility of adverse neurologic events including autoimmune diseases such as GBS through a potent mimicry with Heat Shock 70 kDa protein 12A (HSP70 12A).

6.
Sci Rep ; 11(1): 2291, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504824

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic is affecting millions of patients worldwide. The consequences of initial exposure to SARS-CoV-2 go beyond pulmonary damage, with a particular impact on lipid metabolism. Decreased levels in HDL-C were reported in COVID-19 patients. Since HDL particles display antioxidant, anti-inflammatory and potential anti-infectious properties, we aimed at characterizing HDL proteome and functionality during COVID-19 relative to healthy subjects. HDLs were isolated from plasma of 8 severe COVID-19 patients sampled at admission to intensive care unit (Day 1, D1) at D3 and D7, and from 16 sex- and age-matched healthy subjects. Proteomic analysis was performed by LC-MS/MS. The relative amounts of proteins identified in HDLs were compared between COVID-19 and controls. apolipoprotein A-I and paraoxonase 1 were confirmed by Western-blot analysis to be less abundant in COVID-19 versus controls, whereas serum amyloid A and alpha-1 antitrypsin were higher. HDLs from patients were less protective in endothelial cells stiumalted by TNFα (permeability, VE-cadherin disorganization and apoptosis). In these conditions, HDL inhibition of apoptosis was blunted in COVID-19 relative to controls. In conclusion, we show major changes in HDL proteome and decreased functionality in severe COVID-19 patients.


Assuntos
COVID-19/sangue , Lipoproteínas HDL/sangue , Apolipoproteína A-I/sangue , Arildialquilfosfatase/análise , Arildialquilfosfatase/sangue , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Células Endoteliais/patologia , Feminino , França/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Proteoma/metabolismo , Proteômica/métodos , SARS-CoV-2/isolamento & purificação , Proteína Amiloide A Sérica/metabolismo , Espectrometria de Massas em Tandem/métodos , Fator de Necrose Tumoral alfa/sangue , alfa 1-Antitripsina/sangue
7.
Antioxidants (Basel) ; 9(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408712

RESUMO

Diabetes constitutes a major health problem associated with severe complications. In hyperglycemic conditions, chronically increased oxidation and glycation of circulating components lead to advanced glycation end-products (AGEs) formation, a key contributor in diabetes complication progression. In line with literature documenting the beneficial properties of herbal teas, this study evaluates the antioxidant/glycant properties of Antirhea borbonica (Ab). Ab aqueous extract effects were tested on human albumin or erythrocytes submitted to methyl glyoxal-mediated glycoxidative damages. By using mass spectrometry, Ab aqueous extracts revealed to be rich in polyphenols. All tested biomarkers of oxidation and glycation, such as AGE, ketoamine, oxidized thiol groups, were decreased in albumin when glycated in the presence of Ab aqueous extract. Ab extract preserve erythrocyte from methylglyoxal (MGO)-induced damages in terms of restored membrane deformability, reduced oxidative stress and eryptosis phenomenon. Antioxidant capacities of Ab extract on erythrocytes were retrieved in vivo in zebrafish previously infused with MGO. These results bring new evidences on the deleterious impacts of glycation on albumin and erythrocyte in diabetes. Furthermore, it reveals antioxidant and antiglycant properties of Ab that could be used for the dietary modulation of oxidative stress and glycation in hyperglycemic situations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA