Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 489: 234-250, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272004

RESUMO

A signature feature of the neocortex is the dense network of horizontal connections (HCs) through which pyramidal neurons (PNs) exchange "contextual" information. In primary visual cortex (V1), HCs are thought to facilitate boundary detection, a crucial operation for object recognition, but how HCs modulate PN responses to boundary cues within their classical receptive fields (CRF) remains unknown. We began by "asking" natural images, through a structured data collection and ground truth labeling process, what function a V1 cell should use to compute boundary probability from aligned edge cues within and outside its CRF. The "answer" was an asymmetric 2-D sigmoidal function, whose nonlinear form provides the first normative account for the "multiplicative" center-flanker interactions previously reported in V1 neurons (Kapadia et al., 1995, 2000; Polat et al., 1998). Using a detailed compartmental model, we then show that this boundary-detecting classical-contextual interaction function can be computed by NMDAR-dependent spatial synaptic interactions within PN dendrites - the site where classical and contextual inputs first converge in the cortex. In additional simulations, we show that local interneuron circuitry activated by HCs can powerfully leverage the nonlinear spatial computing capabilities of PN dendrites, providing the cortex with a highly flexible substrate for integration of classical and contextual information.


Assuntos
Córtex Visual , Neurônios/fisiologia , Células Piramidais , Córtex Visual/fisiologia , Percepção Visual/fisiologia
2.
Nature ; 509(7500): 331-336, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805243

RESUMO

How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of 'citizen neuroscientists'. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such 'space-time wiring specificity' could endow SAC dendrites with receptive fields that are oriented in space-time and therefore respond selectively to stimuli that move in the outward direction from the soma.


Assuntos
Mapeamento Encefálico , Modelos Neurológicos , Vias Neurais/fisiologia , Retina/citologia , Retina/fisiologia , Análise Espaço-Temporal , Células Amácrinas/citologia , Células Amácrinas/fisiologia , Células Amácrinas/ultraestrutura , Animais , Inteligência Artificial , Crowdsourcing , Dendritos/metabolismo , Camundongos , Movimento (Física) , Terminações Pré-Sinápticas/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/fisiologia , Células Bipolares da Retina/ultraestrutura
3.
Artigo em Inglês | MEDLINE | ID: mdl-25554708

RESUMO

In pursuit of the goal to understand and eventually reproduce the diverse functions of the brain, a key challenge lies in reverse engineering the peculiar biology-based "technology" that underlies the brain's remarkable ability to process and store information. The basic building block of the nervous system is the nerve cell, or "neuron," yet after more than 100 years of neurophysiological study and 60 years of modeling, the information processing functions of individual neurons, and the parameters that allow them to engage in so many different types of computation (sensory, motor, mnemonic, executive, etc.) remain poorly understood. In this paper, we review both historical and recent findings that have led to our current understanding of the analog spatial processing capabilities of dendrites, the major input structures of neurons, with a focus on the principal cell type of the neocortex and hippocampus, the pyramidal neuron (PN). We encapsulate our current understanding of PN dendritic integration in an abstract layered model whose spatially sensitive branch-subunits compute multidimensional sigmoidal functions. Unlike the 1-D sigmoids found in conventional neural network models, multidimensional sigmoids allow the cell to implement a rich spectrum of nonlinear modulation effects directly within their dendritic trees.

4.
Proc Natl Acad Sci U S A ; 111(1): 498-503, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24357611

RESUMO

Pyramidal neuron (PN) dendrites compartmentalize voltage signals and can generate local spikes, which has led to the proposal that their dendrites act as independent computational subunits within a multilayered processing scheme. However, when a PN is strongly activated, back-propagating action potentials (bAPs) sweeping outward from the soma synchronize dendritic membrane potentials many times per second. How PN dendrites maintain the independence of their voltage-dependent computations, despite these repeated voltage resets, remains unknown. Using a detailed compartmental model of a layer 5 PN, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated "cross-talk" from other dendrites over a 100-fold range. Then, through an analysis of conductance, voltage, and current waveforms within the model cell, we identify three biophysical mechanisms that together help make independent dendritic computation possible in a firing neuron, suggesting that a major subtype of neocortical neuron has been optimized for layered, compartmentalized processing under in-vivo-like spiking conditions.


Assuntos
Dendritos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Potenciais de Ação/fisiologia , Encéfalo/fisiologia , Simulação por Computador , Humanos , Modelos Lineares , Potenciais da Membrana , Modelos Neurológicos , N-Metilaspartato/química
5.
PLoS Comput Biol ; 8(7): e1002599, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829759

RESUMO

Neocortical pyramidal neurons (PNs) receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.


Assuntos
Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Modelos Neurológicos , Células Piramidais/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Dendritos/metabolismo , N-Metilaspartato/metabolismo , Condução Nervosa/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Sinapses/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
6.
Neural Comput ; 19(11): 2865-70, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17883343

RESUMO

Compartmental models provide a major source of insight into the information processing functions of single neurons. Over the past 15 years, one of the most widely used neuronal morphologies has been the cell called "j4," a layer 5 pyramidal cell from cat visual cortex originally described in Douglas, Martin, and Whitteridge (1991). The cell has since appeared in at least 28 published compartmental modeling studies, including several in this journal. In recently examining why we could not reproduce certain in vitro data involving the attenuation of signals originating in distal basal dendrites, we discovered that pronounced fluctuations in the diameter measurements of j4 lead to a bottlenecking effect that increases distal input resistances and significantly reduces voltage transfer between distal sites and the cell body. Upon smoothing these diameter fluctuations, bringing j4 more in line with other reconstructions of layer 5 pyramidal neurons, we found that the attenuation of steady-state voltage signals traveling to the cell body V(distal)/V(soma) was reduced by 60% at some locations in some branches (corresponding to a 2.5-fold increase in the voltage response at the soma for the same distal depolarization) and by 30% on average (corresponding to a 45% increase in somatic response). Changes of this magnitude could lead to different outcomes in some types of compartmental modeling studies. A smoothed version of the j4 morphology is available online at http://lnc.usc.edu/j4-smooth/ .


Assuntos
Dendritos/fisiologia , Redes Neurais de Computação , Neurônios/citologia , Neurônios/fisiologia , Animais , Gatos , Potenciais da Membrana/fisiologia , Neurônios/classificação , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA