Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39129281

RESUMO

In medicine, bioavailability is the percentage of a drug that enters the bloodstream and can be used to treat a patient. It has proven challenging throughout time to develop techniques that allow oral administration of most drugs, regardless of their properties, to achieve therapeutic systemic availability. This will be an impressive feat, considering that over 90% of pharmaceuticals are known to have limitations on their oral bioavailability. Improving bioavailability is crucial for optimizing the efficacy and safety of drugs. This review covers a wide range of techniques, including physical, chemical, and formulation approaches, highlighting their mechanisms, advantages, and limitations. Inhibitions of efflux pumps, inhibition of presystemic metabolism, and innovative drug delivery systems that capitalize on the gastrointestinal regionality of medicines are some of the new techniques that have drawn increased interest. Nanotechnology in pharmaceuticals is also being used in this field. We have collected the literature data from 2009 to 2024 using Science Direct, PubMed/Medline, Scopus, and Google Scholar.

3.
Chem Biodivers ; 8(6): 1139-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21674786

RESUMO

The antimicrobial potential of two bioflavonoids, i.e., 5,7-dihydroxy-4',6,8-trimethoxyflavone (1) and 5,6-dihydroxy-4',7,8-trimethoxyflavone (2), isolated from Limnophila heterophylla Benth. and L. indica (Linn.) Druce (Scrophulariaceae), respectively, were evaluated against the microbial strains Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Alternaria solani, and Candida albicans. Compounds 1 and 2 exhibited moderate but broad antimicrobial activities against both Gram-positive and Gram-negative bacteria and also against the fungal pathogens. Moreover, the mechanism of action of 1 and 2 on the cellular functions or structures of some of the microorganisms was studied. Compound 1 showed a bactericidal effect against E. coli and S. aureus (MICs of 200 and 250 µg/ml, resp.), while compound 2 was found to effectively kill B. subtilis by cell lysis. The growth of A. solani and C. albicans was inhibited by compounds 1 and 2, respectively. The effects of the flavonoids on the cellular structures and the carbohydrate metabolic pathways were studied by scanning electron microscopy (SEM) of the treated cells and by assessing the specific activity of key enzymes of the pathways, respectively. At sublethal doses, they enhanced the activity of gluconeogenic fructose bisphosphatase, but decreased the activity of phosphofructokinase and isocitrate dehydrogenase, the key enzymes of the EmbdenMeyerhofParnas pathway and the tricarboxylic acid cycle, respectively.


Assuntos
Anti-Infecciosos/farmacologia , Flavonas/química , Scrophulariaceae/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Flavonas/isolamento & purificação , Flavonas/farmacologia , Frutose-Bifosfatase/metabolismo , Isocitrato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Fosfofrutoquinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA