Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38105970

RESUMO

The human gut microbiome contains many bacterial strains of the same species ('strain-level variants'). Describing strains in a biologically meaningful way rather than purely taxonomically is an important goal but challenging due to the genetic complexity of strain-level variation. Here, we measured patterns of co-evolution across >7,000 strains spanning the bacterial tree-of-life. Using these patterns as a prior for studying hundreds of gut commensal strains that we isolated, sequenced, and metabolically profiled revealed widespread structure beneath the phylogenetic level of species. Defining strains by their co-evolutionary signatures enabled predicting their metabolic phenotypes and engineering consortia from strain genome content alone. Our findings demonstrate a biologically relevant organization to strain-level variation and motivate a new schema for describing bacterial strains based on their evolutionary history.

3.
J Biol Chem ; 295(7): 1898-1914, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31792058

RESUMO

The widely expressed bromodomain and extraterminal motif (BET) proteins bromodomain-containing protein 2 (BRD2), BRD3, and BRD4 are multifunctional transcriptional regulators that bind acetylated chromatin via their conserved tandem bromodomains. Small molecules that target BET bromodomains are being tested for various diseases but typically do not discern between BET family members. Genomic distributions and protein partners of BET proteins have been described, but the basis for differences in BET protein function within a given lineage remains unclear. By establishing a gene knockout-rescue system in a Brd2-null erythroblast cell line, here we compared a series of mutant and chimeric BET proteins for their ability to modulate cell growth, differentiation, and gene expression. We found that the BET N-terminal halves bearing the bromodomains convey marked differences in protein stability but do not account for specificity in BET protein function. Instead, when BET proteins were expressed at comparable levels, their specificity was largely determined by the C-terminal half. Remarkably, a chimeric BET protein comprising the N-terminal half of the structurally similar short BRD4 isoform (BRD4S) and the C-terminal half of BRD2 functioned similarly to intact BRD2. We traced part of the BRD2-specific activity to a previously uncharacterized short segment predicted to harbor a coiled-coil (CC) domain. Deleting the CC segment impaired BRD2's ability to restore growth and differentiation, and the CC region functioned in conjunction with the adjacent ET domain to impart BRD2-like activity onto BRD4S. In summary, our results identify distinct BET protein domains that regulate protein turnover and biological activities.


Assuntos
Proteínas de Ciclo Celular/genética , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Acetilação , Motivos de Aminoácidos/genética , Proteínas de Ciclo Celular/ultraestrutura , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Cromatina/genética , Eritroblastos/química , Eritroblastos/metabolismo , Eritroblastos/ultraestrutura , Regulação da Expressão Gênica/genética , Humanos , Domínios Proteicos/genética , Isoformas de Proteínas/genética , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/ultraestrutura
4.
Cell Rep ; 27(2): 400-415.e5, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970245

RESUMO

Global changes in chromatin organization and the cessation of transcription during mitosis are thought to challenge the resumption of appropriate transcription patterns after mitosis. The acetyl-lysine binding protein BRD4 has been previously suggested to function as a transcriptional "bookmark" on mitotic chromatin. Here, genome-wide location analysis of BRD4 in erythroid cells, combined with data normalization and peak characterization approaches, reveals that BRD4 widely occupies mitotic chromatin. However, removal of BRD4 from mitotic chromatin does not impair post-mitotic activation of transcription. Additionally, histone mass spectrometry reveals global preservation of most posttranslational modifications (PTMs) during mitosis. In particular, H3K14ac, H3K27ac, H3K122ac, and H4K16ac widely mark mitotic chromatin, especially at lineage-specific genes, and predict BRD4 mitotic binding genome wide. Therefore, BRD4 is likely not a mitotic bookmark but only a "passenger." Instead, mitotic histone acetylation patterns may constitute the actual bookmarks that restore lineage-specific transcription patterns after mitosis.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Camundongos , Mitose/fisiologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Transcrição Gênica
5.
Nat Commun ; 9(1): 782, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472540

RESUMO

Single-nucleotide variants that underlie phenotypic variation can affect chromatin occupancy of transcription factors (TFs). To delineate determinants of in vivo TF binding and chromatin accessibility, we introduce an approach that compares ChIP-seq and DNase-seq data sets from genetically divergent murine erythroid cell lines. The impact of discriminatory single-nucleotide variants on TF ChIP signal enables definition at single base resolution of in vivo binding characteristics of nuclear factors GATA1, TAL1, and CTCF. We further develop a facile complementary approach to more deeply test the requirements of critical nucleotide positions for TF binding by combining CRISPR-Cas9-mediated mutagenesis with ChIP and targeted deep sequencing. Finally, we extend our analytical pipeline to identify nearby contextual DNA elements that modulate chromatin binding by these three TFs, and to define sequences that impact kb-scale chromatin accessibility. Combined, our approaches reveal insights into the genetic basis of TF occupancy and their interplay with chromatin features.


Assuntos
Cromatina/metabolismo , Variação Genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Imunoprecipitação da Cromatina , Camundongos , Ligação Proteica , Fatores de Transcrição/genética
6.
PLoS One ; 5(9): e12953, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886091

RESUMO

Due to the energetic frustration of RNA folding, tertiary structured RNA is typically characterized by a rugged folding free energy landscape where deep kinetic barriers separate numerous misfolded states from one or more native states. While most in vitro studies of RNA rely on (re)folding chemically and/or enzymatically synthesized RNA in its entirety, which frequently leads into kinetic traps, nature reduces the complexity of the RNA folding problem by segmental, co-transcriptional folding starting from the 5' end. We here have developed a simplified, general, nondenaturing purification protocol for RNA to ask whether avoiding denaturation of a co-transcriptionally folded RNA can reduce commonly observed in vitro folding heterogeneity. Our protocol bypasses the need for large-scale auxiliary protein purification and expensive chromatographic equipment and involves rapid affinity capture with magnetic beads and removal of chemical heterogeneity by cleavage of the target RNA from the beads using the ligand-induced glmS ribozyme. For two disparate model systems, the Varkud satellite (VS) and hepatitis delta virus (HDV) ribozymes, we achieve >95% conformational purity within one hour of enzymatic transcription, without the need for any folding chaperones. We further demonstrate that in vitro refolding introduces severe conformational heterogeneity into the natively-purified VS ribozyme but not into the compact, double-nested pseudoknot fold of the HDV ribozyme. We conclude that conformational heterogeneity in complex RNAs can be avoided by co-transcriptional folding followed by nondenaturing purification, providing rapid access to chemically and conformationally pure RNA for biologically relevant biochemical and biophysical studies.


Assuntos
Vírus Delta da Hepatite/química , RNA Viral/química , RNA Viral/isolamento & purificação , Extração em Fase Sólida/métodos , Transcrição Gênica , Vírus Delta da Hepatite/genética , Magnetismo , Conformação de Ácido Nucleico , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA