Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 636954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168641

RESUMO

Neutrophil extracellular traps (NETs) consist of decondensed nuclear chromatin that is associated with proteins and are released by neutrophils during an inflammatory response. Released NETs are able to capture pathogens, prevent their dissemination and potentially kill them via antimicrobial peptides and proteins that are associated with the decondensed chromatin. In addition to their antimicrobial functions, NETs have also been shown to exert immunomodulatory effects by activation and differentiation of macrophages, dendritic cells and T cells. However, the effect of NETs on neutrophil functions is poorly understood. Here we report the first comprehensive study regarding the effects of NETs on human primary neutrophils in vitro. NETs were isolated from cultures of PMA-exposed neutrophils. Exposure of neutrophils to isolated NETs resulted in the activation of several neutrophil functions in a concentration-dependent manner. NETs induced exocytosis of granules, the production of reactive oxygen species (ROS) by the NADPH oxidase NOX2, NOX2-dependent NET formation, increased the phagocytosis and killing of microbial pathogens. Furthermore, NETs induced the secretion of the proinflammatory chemokine IL-8 and the B-cell-activating cytokine BAFF. We could show that the NET-induced activation of neutrophils occurs by pathways that involve the phosphorylation of Akt, ERK1/2 and p38. Taken together our results provide further insights into the proinflammatory role of NETs by activating neutrophil effector function and further supports the view that NETs can amplify inflammatory events. On the one hand the amplified functions enhance the antimicrobial defense. On the other hand, NET-amplified neutrophil functions can be involved in the pathophysiology of NET-associated diseases. In addition, NETs can connect the innate and adaptive immune system by inducing the secretion of the B-cell-activating cytokine BAFF.


Assuntos
Armadilhas Extracelulares/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Fator Ativador de Células B/metabolismo , Células Cultivadas , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases , NADPH Oxidase 2/metabolismo , Ativação de Neutrófilo , Fagocitose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Front Immunol ; 8: 1628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225603

RESUMO

Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive immunity. Through regulation of T cell functions, Tregs have also been demonstrated to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs on myeloid cell functions are insufficiently characterized, especially in the context of myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers myeloid cell activation through specific activation of Fc gamma receptors, leading to skin inflammation and subepidermal blistering. Here, we used mouse models to address the potential contribution of Tregs to PD pathogenesis in vivo. Depletion of Tregs induced excessive inflammation and blistering both clinically and histologically in two different PD mouse models. Of note, in the skin of Treg-depleted mice with PD, we detected increased expression of different cytokines, including Th2-specific IL-4, IL-10, and IL-13 as well as pro-inflammatory Th1 cytokine IFN-γ and the T cell chemoattractant CXCL-9. We next aimed to determine whether Tregs alter the migratory behavior of myeloid cells, dampen immune complex (IC)-induced myeloid cell activation, or both. In vitro experiments demonstrated that co-incubation of IC-activated myeloid cells with Tregs had no impact on the release of reactive oxygen species (ROS) but downregulated ß2 integrin expression. Hence, Tregs mitigate PD by altering the migratory capabilities of myeloid cells rather than their release of ROS. Modulating cytokine expression by administering an excess of IL-10 or blocking IFN-γ may be used in clinical translation of these findings.

3.
Front Immunol ; 8: 184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293240

RESUMO

The inflammatory microenvironment is commonly characterized by extracellular acidosis (pH < 7.35). Sensitivity to pH, CO2 or bicarbonate concentrations allows neutrophils to react to changes in their environment and to detect inflamed areas in the tissue. One important antimicrobial effector mechanism is the production of neutrophil extracellular traps (NETs), which are released during a programmed reactive oxygen species (ROS)-dependent cell death, the so-called NETosis. Although several functions of neutrophils have been analyzed under acidic conditions, the effect of extracellular acidosis on NETosis remains mainly unexplored and the available experimental results are contradictory. We performed a comprehensive study with the aim to elucidate the effect of extracellular acidosis on ROS-dependent NETosis of primary human neutrophils and to identify the underlying mechanisms. The study was performed in parallel in a CO2-bicabonate-buffered culture medium, which mimics in vivo conditions, and under HEPES-buffered conditions to verify the effect of pH independent of CO2 or bicarbonate. We could clearly show that extracellular acidosis (pH 6.5, 6.0, and 5.5) and intracellular acidification inhibit the release of ROS-dependent NETs upon stimulation of neutrophils with phorbol myristate acetate and immobilized immune complexes. Moreover, our findings suggest that the diminished NET release is a consequence of reduced ROS production and diminished glycolysis of neutrophils under acidic conditions. It was suggested previously that neutrophils can sense the border of inflamed tissue by the pH gradient and that a drop in pH serves as an indicator for the progress of inflammation. Following this hypothesis, our data indicate that an acidic inflammatory environment results in inhibition of extracellular operating effector mechanisms of neutrophils such as release of ROS and NETs. This way the release of toxic components and tissue damage can be avoided. However, we observed that major antimicrobial effector mechanisms such as phagocytosis and the killing of pathogens by neutrophils remain functional under acidic conditions.

4.
J Invest Dermatol ; 136(1): 117-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26763431

RESUMO

Host defense against pathogens relies on neutrophil activation. Inadequate neutrophil activation is often associated with chronic inflammatory diseases. Neutrophils also constitute a significant portion of infiltrating cells in chronic inflammatory diseases, for example, psoriasis and multiple sclerosis. Fumarates improve the latter diseases, which so far has been attributed to the effects on lymphocytes and dendritic cells. Here, we focused on the effects of dimethylfumarate (DMF) on neutrophils. In vitro, DMF inhibited neutrophil activation, including changes in surface marker expression, reactive oxygen species production, formation of neutrophil extracellular traps, and migration. Phagocytic ability and autoantibody-induced, neutrophil-dependent tissue injury ex vivo was also impaired by DMF. Regarding the mode of action, DMF modulates-in a stimulus-dependent manner-neutrophil activation using the phosphoinositide 3-kinase/Akt-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 pathways. For in vivo validation, mouse models of epidermolysis bullosa acquisita, an organ-specific autoimmune disease caused by autoantibodies to type VII collagen, were employed. In the presence of DMF, blistering induced by injection of anti-type VII collagen antibodies into mice was significantly impaired. DMF treatment of mice with clinically already-manifested epidermolysis bullosa acquisita led to disease improvement. Collectively, we demonstrate a profound inhibitory activity of DMF on neutrophil functions. These findings encourage wider use of DMF in patients with neutrophil-mediated diseases.


Assuntos
Fumarato de Dimetilo/farmacologia , Epidermólise Bolhosa Adquirida/imunologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Intervalos de Confiança , Modelos Animais de Doenças , Epidermólise Bolhosa Adquirida/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
5.
J Pathol ; 237(1): 111-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25953430

RESUMO

Genetic studies have added to the understanding of complex diseases. Here, we used a combined genetic approach for risk-loci identification in a prototypic, organ-specific, autoimmune disease, namely experimental epidermolysis bullosa acquisita (EBA), in which autoantibodies to type VII collagen (COL7) and neutrophil activation cause mucocutaneous blisters. Anti-COL7 IgG induced moderate blistering in most inbred mouse strains, while some showed severe disease or were completely protected. Using publicly available genotyping data, we identified haplotype blocks that control blistering and confirmed two haplotype blocks in outbred mice. To identify the blistering-associated genes, haplotype blocks encoding genes that are differentially expressed in EBA-affected skin were considered. This procedure identified nine genes, including retinoid-related orphan receptor alpha (RORα), known to be involved in neurological development and function. After anti-COL7 IgG injection, RORα+/- mice showed reduced blistering and homozygous mice were completely resistant to EBA induction. Furthermore, pharmacological RORα inhibition dose-dependently blocked reactive oxygen species (ROS) release from activated neutrophils but did not affect migration or phagocytosis. Thus, forward genomics combined with multiple validation steps identifies RORα to be essential to drive inflammation in experimental EBA.


Assuntos
Epidermólise Bolhosa Adquirida/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pele/metabolismo , Animais , Autoanticorpos/imunologia , Colágeno Tipo VII/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Epidermólise Bolhosa Adquirida/genética , Epidermólise Bolhosa Adquirida/imunologia , Epidermólise Bolhosa Adquirida/patologia , Predisposição Genética para Doença , Genômica/métodos , Haplótipos , Heterozigoto , Homozigoto , Imunoglobulina G/imunologia , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Especificidade da Espécie , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Fatores de Tempo
6.
Int J Med Microbiol ; 305(6): 493-500, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26005182

RESUMO

The obligatory intracellular bacterium Chlamydia pneumoniae (C. pneumoniae) can survive and multiply in neutrophil granulocytes. Since neutrophils are short living cells, inhibition of neutrophil apoptosis appears to play a major role in the productive infection of neutrophils by C. pneumoniae. In the present study, we have investigated which survival pathways and which events of the apoptotic process are modulated in C. pneumoniae-infected neutrophils. All infection experiments were carried out using primary human neutrophils in vitro. We show that infection with C. pneumoniae activates PI3K/Akt as well as the ERK1/2 and p38 MAP kinases and present evidence that activation of the PI3K/Akt and ERK1/2 pathways are essential to initiate the apoptosis delay in C. pneumoniae-infected neutrophils. Both the PI3K/Akt and ERK1/2 pathways are involved in the maintained expression of the anti-apoptotic protein Mcl-1. In addition, we also showed that the PI3K/Akt pathway leads to the activation of NF-κB-dependent release of IL-8 by infected neutrophils. Infection with C. pneumoniae activates the PI3K/Akt and ERK1/2 MAPK survival pathways in neutrophils, induces the NF-κB dependent release of IL-8 and leads to the maintenance of Mcl-1 expression in neutrophils.


Assuntos
Apoptose , Chlamydophila pneumoniae/crescimento & desenvolvimento , Neutrófilos/microbiologia , Regulação da Expressão Gênica , Humanos , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Immunol ; 193(4): 1954-65, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024378

RESUMO

Canonical neutrophil antimicrobial effector mechanisms, such as degranulation, production of reactive oxygen species, and release of neutrophil extracellular traps (NETs), can result in severe pathology. Activation of neutrophils through immune complexes (ICs) plays a central role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report that immobilized ICs (iICs), which are hallmarks of several autoimmune diseases, induce the release of NETs from primary human neutrophils. The iIC-induced NET formation was found to require production of reactive oxygen species by NADPH oxidase and myeloperoxidase and to be mediated by FcγRIIIb. Blocking of the ß2 integrin macrophage-1 Ag but not lymphocyte function-associated Ag-1 abolished iIC-induced NET formation. This suggests that FcγRIIIb signals in association with macrophage-1 Ag. As intracellular signaling pathways involved in iIC-induced NET formation we identified the tyrosine kinase Src/Syk pathway, which downstream regulates the PI3K/Akt, p38 MAPK, and ERK1/2 pathways. To our knowledge, the present study shows for the first time that iICs induce NET formation. Thus, we conclude that NETs contribute to pathology in autoimmune inflammatory disorders associated with surface-bound ICs.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Antígeno de Macrófago 1/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Receptores de IgG/imunologia , Aminopirina/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Doenças Autoimunes/imunologia , Butadienos/farmacologia , Antígeno CD11a/metabolismo , Antígenos CD18/metabolismo , Degranulação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas Ligadas por GPI/imunologia , Humanos , Imidazóis/farmacologia , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno de Macrófago 1/metabolismo , Mesalamina/farmacologia , Nitrilas/farmacologia , Oniocompostos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/antagonistas & inibidores , Quinase Syk , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/imunologia
8.
Med Microbiol Immunol ; 202(1): 25-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22661217

RESUMO

Neutrophil granulocytes provide the first line of defense against bacterial, fungal, and parasitic infections. They phagocytose and kill many invading pathogens. Certain pathogenic microorganisms such as the intracellular protozoan parasite Leishmania major (L. major) can survive inside neutrophils. Mature neutrophils have a very short life span due to spontaneous apoptosis. Previously, we have reported that infections with L. major are able to delay spontaneous apoptosis. In the present study, we addressed the underlying mechanisms of regulation of both extrinsic and intrinsic apoptosis. We show that interaction with L. major transiently activates ERK1/2 phosphorylation. Pharmacological inhibition of ERK1/2 phosphorylation reversed the apoptosis delay. Moreover, infection leads to the enhanced and sustainable expression of the anti-apoptotic proteins Bcl-2 and Bfl-1, respectively. As downstream events, the release of cytochrome c from mitochondria and processing of caspase-6 were inhibited. We also confirm that infection with L. major results in reduced FAS expression on the surface of neutrophils. The presented data indicate that infection with L. major affects both intrinsic as well as extrinsic pathways of neutrophil apoptosis. Enhanced life span of host neutrophils enables the parasite to survive within neutrophils.


Assuntos
Apoptose , Leishmania major/patogenicidade , Sistema de Sinalização das MAP Quinases/imunologia , Neutrófilos/imunologia , Neutrófilos/parasitologia , Caspase 6/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Receptor fas/biossíntese
9.
Mediators Inflamm ; 2013: 710239, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24381411

RESUMO

Neutrophil extracellular traps (NETs) have been suggested to play a pathophysiological role in several autoimmune diseases. Since NET-formation in response to several biological and chemical stimuli is mostly ROS dependent, in theory any substance that inhibits or scavenges ROS could prevent ROS-dependent NET release. Therefore, in the present comprehensive study, several antioxidative substances were assessed for their capacity to inhibit NET formation of primary human neutrophils in vitro. We could show that the flavonoids (-)-epicatechin, (+)-catechin hydrate, and rutin trihydrate as well as vitamin C and the pharmacological substances N-acetyl-L-cysteine and 5-aminosalicylic acid inhibited PMA induced ROS production and NET formation. Therefore, a broad spectrum of antioxidative substances that reduce ROS production of primary human neutrophils also inhibits ROS-dependent NET formation. It is tempting to speculate that such antioxidants can have beneficial therapeutic effects in diseases associated with ROS-dependent NET formation.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Mesalamina/farmacologia , Neutrófilos/efeitos dos fármacos , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Humanos , NADPH Oxidases/antagonistas & inibidores , Neutrófilos/imunologia , Peroxidase/metabolismo , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
10.
Mediators Inflamm ; 2012: 849136, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22481865

RESUMO

The formation of neutrophil extracellular traps (NETs) depends on the generation of reactive oxygen species (ROS). Previous studies revealed that both NADPH oxidase and myeloperoxidase (MPO) are required for NET release. However, the contribution of various ROS as well as the role of mitochondria-derived ROS has not been addressed so far. In the present study we aimed to investigate in a systematic and comprehensive manner the contribution of various ROS and ROS-generating pathways to the PMA-induced NET release. By using specific inhibitors, the role of both NADPH oxidase- and mitochondria-derived ROS as well as the contribution of superoxide dismutase (SOD) and MPO on the NET release was assessed. We could demonstrate that NADPH oxidase function is crucial for the formation of NETs. In addition, we could clearly show the involvement of MPO-derived ROS in NET release. Our results, however, did not provide evidence for the role of SOD- or mitochondria-derived ROS in NET formation.


Assuntos
Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto , Apoptose/genética , Sobrevivência Celular/genética , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo
11.
Infect Immun ; 80(4): 1615-23, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252875

RESUMO

Anaplasma phagocytophilum, a Gram-negative, obligate intracellular bacterium infects primarily neutrophil granulocytes. Infection with A. phagocytophilum leads to inhibition of neutrophil apoptosis and consequently contributes to the longevity of the host cells. Previous studies demonstrated that the infection inhibits the executionary apoptotic machinery in neutrophils. However, little attempt has been made to explore which survival signals are modulated by the pathogen. The aim of the present study was to clarify whether the phosphatidylinositol 3-kinase (PI3K)/Akt and NF-κB signaling pathways, which are considered as important survival pathways in neutrophils, are involved in A. phagocytophilum-induced apoptosis delay. Our data show that infection of neutrophils with A. phagocytophilum activates the PI3K/Akt pathway and suggest that this pathway, which in turn maintains the expression of the antiapoptotic protein Mcl-1, contributes to the infection-induced apoptosis delay. In addition, the PI3K/Akt pathway is involved in the activation of NF-κB in A. phagocytophilum-infected neutrophils. Activation of NF-κB leads to the release of interleukin-8 (IL-8) from infected neutrophils, which, in an autocrine manner, delays neutrophil apoptosis. In addition, enhanced expression of the antiapoptotic protein cIAP2 was observed in A. phagocytophilum-infected neutrophils. Taken together, the data indicate that upstream of the apoptotic cascade, signaling via the PI3K/Akt pathway plays a major role for apoptosis delay in A. phagocytophilum-infected neutrophils.


Assuntos
Anaplasma phagocytophilum/patogenicidade , Apoptose , NF-kappa B/metabolismo , Neutrófilos/microbiologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anaplasma phagocytophilum/metabolismo , Proteína 3 com Repetições IAP de Baculovírus , Células Cultivadas , Humanos , Proteínas Inibidoras de Apoptose/biossíntese , Interleucina-8/biossíntese , Proteína de Sequência 1 de Leucemia de Células Mieloides , NF-kappa B/biossíntese , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose , Fosfatidilinositol 3-Quinase/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Transdução de Sinais , Ubiquitina-Proteína Ligases
12.
ScientificWorldJournal ; 11: 2230-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125470

RESUMO

Recently, we have reported that, in addition to macrophages, also neutrophil granulocytes can phagocytose apoptotic neutrophils. Based on this finding, we hypothesized that "cannibalistic" neutrophils at sites of acute infection/inflammation play a major role in the clearance of apoptotic neutrophils. Since at sites of infection/inflammation neutrophils are exposed to microbial constituents and proinflammatory cytokines, in the present study we analyzed the effect of TLR-ligands and cytokines on the ability of neutrophils to phagocytose apoptotic cells in vitro. We observed that exposure to ligands of TLR2 (Malp2, Pam3CSK4), TLR4 (LPS), TLR7/TLR8 (R848), and TLR9 (ODN 2006) led to increased phagocytosis of apoptotic cells by neutrophils. In addition, proinflammatory cytokines such as TNF and GM-CSF strongly enhanced the uptake of apoptotic cells by neutrophils. These results support the hypothesis that neutrophils acquire the ability to phagocytose apoptotic cells at sites of acute infection/inflammation and thereby can contribute to the resolution of inflammation.


Assuntos
Apoptose , Granulócitos/citologia , Mediadores da Inflamação/fisiologia , Neutrófilos/citologia , Fagocitose , Adulto , Humanos
13.
J Immunol ; 184(1): 391-400, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19949068

RESUMO

Neutrophil granulocytes are rapidly recruited from the bloodstream to the site of acute inflammation where they die in large numbers. Because release of toxic substances from dead neutrophils can propagate the inflammatory response leading to tissue destruction, clearance of dying inflammatory neutrophils has a critical function in the resolution of the inflammatory response. Apoptotic neutrophils are phagocytosed primarily by macrophages, provided these cells are present in adequate numbers. However, macrophages are rare at sites of acute inflammation, whereas the number of neutrophils can be extremely high. In the current study, in vitro experiments with human neutrophils were carried out to investigate whether neutrophils can ingest apoptotic neutrophils. We show that naïve granulocytes isolated from venous blood have a limited capacity to phagocytose apoptotic cells. However, exposure to activating stimuli such as LPS, GM-CSF and/or IFN-gamma results in enhanced phagocytosis of apoptotic cells. The efficient uptake of apoptotic cells by neutrophils was found to depend on the presence of heat labile serum factors. Importantly, the contact to or uptake of apoptotic cells inhibited neutrophil functions such as respiratory burst and the release of the proinflammatory cytokines TNF-alpha and interferon-inducible protein-10. Contact to apoptotic cells, however, induced the secretion of IL-8 and growth-related oncogene-alpha, which was independent of NF-kappaB and p38 MAPK but involved C5a and the ERK1/2 pathway. The data suggest that activated neutrophils participate in the clearance of apoptotic cells. In addition, because apoptotic cells inhibit proinflammatory functions of neutrophils, uptake of apoptotic cells by neutrophils contributes to the resolution of inflammation.


Assuntos
Apoptose/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Células Cultivadas , Citocinas/biossíntese , Citocinas/imunologia , Humanos , Explosão Respiratória/imunologia , Transdução de Sinais/imunologia
14.
Infect Immun ; 78(1): 358-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19858302

RESUMO

Anaplasma phagocytophilum, the causative agent of tick-borne human granulocytic anaplasmosis (HGA), is an intracellular bacterium which survives and multiplies inside polymorphonuclear neutrophil granulocytes (PMN). Increased bacterial burden in gamma interferon (IFN-gamma)-deficient mice suggested a major role of IFN-gamma in the control of A. phagocytophilum. Here we investigated whether infection of human PMN with A. phagocytophilum impairs IFN-gamma signaling thus facilitating intracellular survival of the bacterium. The secretion of the IFN-gamma-inducible chemokines IP-10/CXCL10 and MIG/CXCL9 was markedly inhibited in infected neutrophils. Molecular analyses revealed that, compared to uninfected PMN, A. phagocytophilum decreased the expression of the IFN-gamma receptor alpha-chain CD119, diminished the IFN-gamma-induced phosphorylation of STAT1, and enhanced the expression of SOCS1 and SOCS3 in PMN. Since IFN-gamma activates various antibacterial effector mechanisms of PMN, the impaired IFN-gamma signaling in infected cells likely contributes to the survival of A. phagocytophilum inside PMN and to HGA disease development.


Assuntos
Anaplasma phagocytophilum/fisiologia , Interferon gama/metabolismo , Neutrófilos/microbiologia , Transdução de Sinais/fisiologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
15.
BMC Cell Biol ; 10: 34, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19419568

RESUMO

BACKGROUND: Multiple profilin isoforms exist in mammals; at least four are expressed in the mammalian testis. The testis-specific isoforms profilin-3 (PFN3) and profilin-4 (PFN4) may have specialized roles in spermatogenic cells which are distinct from known functions fulfilled by the "somatic" profilins, profilin-1 (PFN1) and profilin-2 (PFN2). RESULTS: Ligand interactions and spatial distributions of PFN3 and PFN4 were compared by biochemical, molecular and immunological methods; PFN1 and PFN2 were employed as controls. beta-actin, phosphoinositides, poly-L-proline and mDia3, but not VASP, were confirmed as in vitro interaction partners of PFN3. In parallel experiments, PFN4 bound to selected phosphoinositides but not to poly-L-proline, proline-rich proteins, or actin. Immunofluorescence microscopy of PFN3 and PFN4 revealed distinct subcellular locations in differentiating spermatids. Both were associated first with the acroplaxome and later with the transient manchette. Predicted 3D structures indicated that PFN3 has the actin-binding site conserved, but retains only approximately half of the common poly-L-proline binding site. PFN4, in comparison, has lost both, polyproline and actin binding sites completely, which is well in line with the experimental data. CONCLUSION: The testis-specific isoform PFN3 showed major hallmarks of the well characterized "somatic" profilin isoforms, albeit with distinct binding affinities. PFN4, on the other hand, did not interact with actin or polyproline in vitro. Rather, it seemed to be specialized for phospholipid binding, possibly providing cellular functions which are distinct from actin dynamics regulation.


Assuntos
Profilinas/metabolismo , Espermátides/metabolismo , Testículo/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Simulação por Computador , Humanos , Cinética , Masculino , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , Ratos , Espermatogênese
16.
Mol Reprod Dev ; 74(5): 539-53, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17034053

RESUMO

Targeted disruption of the epididymis-specific HE6/Gpr64 receptor gene in mice led to male infertility. In order to characterize the phenotype at a molecular level, we compared the gene expression patterns of wild type (wt) versus knockout (KO) caput epididymides. The caput region of KO males, although morphologically normal, nevertheless showed an aberrant expression pattern. Combining micro array analysis, differential library screening, Northern blot analysis and quantitative RT-PCR, we found that the knockout of the HE6/Gpr64 receptor was mainly associated with the downregulation of genes specific to the initial segment. The list of KO downregulated transcripts comprised Enpp2/autotaxin, the lipocalins 8 and 9, the beta-defensin Defb42, cystatins 8 and 12, as well as the membrane proteins Adam (A Disintegrin And Metalloprotease) 28, claudin-10, EAAC1, and the novel Me9. Clusterin/ApoJ and osteopontin/Spp1 mRNAs, on the other hand, were upregulated in the KO tissues. The Me9 transcript was studied in further detail, and we report here a cluster of related epididymis-specific genes. Me9 is specifically expressed in the initial segment and is representative of a novel and highly conserved mammalian gene family. The family consists of single-exon genes only; intron-containing paralogs have not yet been ascertained. The cloned cDNA sequences predicted hydrophobic polytopic membrane proteins containing the DUF716 motif. Protein expression was shown in the rodent caput epididymidis but remained uncertain in primates.


Assuntos
Regulação para Baixo , Epididimo/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Epididimo/patologia , Perfilação da Expressão Gênica , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Filogenia , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA