Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732120

RESUMO

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Corpo Estriado , Doença de Parkinson , Receptor A2A de Adenosina , Animais , Ratos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Triazóis/farmacologia
2.
J Med Chem ; 61(10): 4301-4316, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29681156

RESUMO

Fluorescent ligands represent powerful tools for biological studies and are considered attractive alternatives to radioligands. In this study, we developed fluorescent antagonists for A2B adenosine receptors (A2BARs), which are targeted by antiasthmatic xanthines and were proposed as novel targets in immuno-oncology. Our approach was to merge a small borondipyrromethene (BODIPY) derivative with the pharmacophore of 8-substituted xanthine derivatives. On the basis of the design, synthesis, and evaluation of model compounds, several fluorescent ligands were synthesized. Compound 29 (PSB-12105), which displayed high affinity for human, rat, and mouse A2BARs ( Ki = 0.2-2 nM) and high selectivity for this AR subtype, was selected for further studies. A homology model of the human A2BAR was generated, and docking studies were performed. Moreover, 29 allowed us to establish a homogeneous receptor-ligand binding assay using flow cytometry. These compounds constitute the first potent, selective fluorescent A2BAR ligands and are anticipated to be useful for a variety of applications.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Receptor A2B de Adenosina/química , Animais , Ligação Competitiva , Células CHO , Proliferação de Células , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Ensaio Radioligante , Ratos
3.
ACS Med Chem Lett ; 2(12): 890-5, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900277

RESUMO

Adenosine A2A receptor agonists for the local treatment of inflammatory bowel disease (IBS) were designed and synthesized. Polar groups were introduced to prevent peroral absorption and subsequent systemic, e.g., hypotensive, side effects. 4-(2-{6-Amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-9H-purin-2-ylthio}ethyl)benzenesulfonic acid (7, PSB-0777) was selected for further evaluation in rat ileum/jejunum preparations in ex vivo experiments. Compound 7 significantly improved impaired acetylcholine-induced contractions induced by 2,4,6-trinitrobenzenesulfonic acid and showed synergism with an A2B-selective antagonist. Thus, nonabsorbable, locally active A2A agonists, as a monotherapy or in combination with an A2B antagonist, may be an efficient novel treatment for IBS, preventing the severe systemic side effects of known A2A agonists.

4.
J Med Chem ; 52(23): 7669-77, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19580286

RESUMO

Prodrugs of adenosine A(2A) receptor agonists were developed that are activated by ecto-5'-nucleotidase (ecto-5'-NT, CD73). Because ecto-5'-NT is upregulated in inflamed tissue, the A(2A) agonists are expected to be released from their prodrug form at the sites of inflammation. 2-(Ar)alkyl-substituted AMP derivatives were synthesized and investigated. Certain 2-substituted AMP derivatives, including 2-hexylthio-AMP, 2-cyclopentylthio-AMP, 2-cyclohexylmethylthio-AMP, and 2-cyclohexylethylthio-AMP were accepted as substrates by ecto-5'-NT and readily converted to the corresponding 2-substituted adenosine derivatives. The 2-cyclohexylethylthio substitution was a good compromise between the requirements of the ecto-5'-NT and the adenosine A(2A) receptor. The corresponding AMP derivative (12g) was a similarly good substrate as AMP itself, while the resulting adenosine derivative (11g) was a relatively potent A(2A) agonist (radioligand binding to rat brain striatal membranes: K(i) = 372 nM; inhibition of anti-CD3/anti-CD28-induced IFN-gamma release in mouse CD4+ cells: EC(50) = 50 nM). Compound 11g was released from 12g by incubation with CD4+ cells isolated from wild-type mice but only to a much smaller extent by cells from ecto-5'-NT knockout mice. Compound 12g will be a new lead structure for the development of more potent and selective ecto-5'-NT-activated prodrugs of selective anti-inflammatory A(2A) receptor agonists.


Assuntos
5'-Nucleotidase/metabolismo , Agonistas do Receptor A2 de Adenosina , Monofosfato de Adenosina/metabolismo , Pró-Fármacos/metabolismo , Monofosfato de Adenosina/química , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Regulação Enzimológica da Expressão Gênica , Humanos , Hidrólise , Interferon gama/biossíntese , Masculino , Camundongos , Pró-Fármacos/química , Ratos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Vasodilatação/efeitos dos fármacos
5.
Bioorg Med Chem ; 17(7): 2842-51, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19278853

RESUMO

In the present study we synthesized 36 coumarin and 2H-chromene derivatives applying a recently developed umpoled domino reaction using substituted salicylaldehyde and alpha,beta-unsaturated aldehyde derivatives as starting compounds. In radioligand binding studies 5-substituted 3-benzylcoumarin derivatives showed affinity to cannabinoid CB(1) and CB(2) receptors and were identified as new lead structures. In further GTPgammaS binding studies selected compounds were shown to be antagonists or inverse agonists.


Assuntos
Cumarínicos/síntese química , Cumarínicos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Linhagem Celular , Cumarínicos/química , Agonismo Inverso de Drogas , Humanos , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA