RESUMO
Slow release urea has been widely tested in recent past as an effective method to enhance the crop productivity with fewer environmental concerns. However, very few research studies have been performed using micronutrients as a source of slow release of urea nitrogen. A laboratory and field study were carried out to check the agronomic effects of zinc oxide nanoparticles and its bulk salt coatings on urea prills on wheat (Triticum aestivum L.). Different concentrations of zinc oxide nanoparticles (0.25, 0.5 and 4% elemental zinc) were coated on urea prills to slow down the release rate. Bulk zinc oxide salt (ZnO) with similar concentrations was also used in parallel to make a comparison between nano and bulk salt. The SEM of zinc oxide nanoparticles clearly depicted zinc oxide nanoparticles size within a range of 50-90 nm. The XRD and FTIR spectrums also showed its characteristics peak at designated positions. Field study revealed than 0.5% zinc oxide nanoparticles coated urea boosted the crop growth and yield in comparison to the bulk zinc oxide coated urea having similar zinc concentrations, i.e., 0.25%, 0.5% and 4% elemental zinc. The plant parameters like plant height, root length, root volume, grain yield and dry matter weight were significantly increased due to application of zinc oxide nanoparticles.
Assuntos
Nanopartículas , Oligoelementos , Óxido de Zinco , Fertilizantes/análise , Micronutrientes , Solo , Triticum , Ureia/farmacologia , Zinco/análise , Óxido de Zinco/farmacologiaRESUMO
Nitrogen (N) losses from conventional fertilizers in agricultural systems are very high, which can lead to serious environmental pollution with economic loss. In this study, innovative slow-release fertilizers were prepared using zinc (Zn) [nanoparticles (NPs) or in bulk], using molasses as an environmentally friendly coating. Several treatments were prepared using Zn in different concentrations (i.e., 0.25%, 0.5%, and 4% elemental Zn). The zinc oxide nanoparticles (ZnO-NPs) were prepared from zinc sulfate heptahydrate (ZnSO4·7H2O), and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Furthermore, the Zn-loaded urea samples were tested for urea N release rate, leaching of water from soil, and crushing strength to assess the impact of coating on the final finished product. Pot experiments were conducted simultaneously to check the agronomic effects of Zn-coated slow-release urea on the growth and development of wheat (Triticum aestivum L.). The laboratory and pot results confirmed that the ZnO-NP treatments boost wheat growth and yield as a result of reduced N and Zn release. UZnNPs2 (urea coated with 0.5% ZnO-NPs and 5% molasses) demonstrated the best results among all the treatments in terms of slow nutrient release, N and Zn uptake, and grain yield. The UZnNPs2 treatment increased plant yield by 34% (i.e., 4,515 vs. 3,345 kg ha-1) relative to the uncoated prill-treated crop because of the slower release of Zn and N.
RESUMO
Low nitrogen (N) utilization efficiency due to environmental N losses from fertilizers results in high-cost on-farm production. Urea coating with biodegradable polymers can prevent these losses by controlling the N release of fertilizers. We calculated N release kinetics of coated granular with various biodegradable polymeric materials and its impact on spinach yield and N uptake. Different formulations were used, (i) G-1: 10% starch + 5% polyvinyl alcohol (PVA) + 5% molasses; (ii) G-2: 10% starch + 5% PVA + 5% paraffin wax (PW); (iii) G-3: 5% gelatin + 10% gum arabic + 5% PW; (iv) G-4: 5% molasses + 5% gelatin + 10% gum arabic, to coat urea using a fluidized bed coater. The morphological and X-ray diffraction (XRD) analyses indicated that a uniform coating layer with no new phase formation occurred. In the G-2 treatment, maximum crushing strength (72.9 N) was achieved with a slowed-down N release rate and increased efficiency of 31%. This resulted in increased spinach dry foliage yield (47%), N uptake (60%) and apparent N recovery (ANR: 130%) from G-2 compared to uncoated urea (G-0). Therefore, coating granular urea with biodegradable polymers is a good choice to slower down the N release rate and enhances the crop yield and N utilization efficiency from urea.